文章导读:
数控机床精度靠什么装置保证?
方法主要有:
①试切法调整
试切法调整,就是对被加工零件进行“试切-测量-调整-再试切”,直至达到所要求的精度。它的调整误差来源有:测量误差;微量进给时,机构灵敏度所引起的误差;最小切削深度影响。
②用定程机构调整
③用样件或样板调整
(5)工件残余应力引起的误差
残余应力是指当外部载荷去掉以后仍存留在工件内部的应力。残余应力是由于金属发生了不均匀的体积变化而产生的。其外界因素来自热加工和冷加工。有残余应力的零件处于一种不稳定状态。一旦其内应力的平衡条件被打破,内应力的分布就会发生变化,从而引起新的变形,影响加工精度。
①内应力产生的原因主要有:毛坯制造中产生的内应力;冷校正产生的内应力;切削加工产生的内应力。
②减小或消除内应力的措施一是采用适当的热处理工序。二是给工件足够的变形时间。三是零件结构要合理,结构要简单,壁厚要均匀。
6)数控机床产生误差的独特性
数控机床与普通机床的最主要差别有两点:一是数控机床具有“指挥系统”——数控系统;二是数控机床具有执行运动的驱动系统——伺服系统。
在数控机床上所产生的加工误差,与在普通机床上产生的加工误差,其来源有许多共同之处,但也有独特之处,例如伺服进给系统的跟踪误差、检测系统中的采样延滞误差等,这些都是普通机床加工时所没有的。所以在数控加工中,除了要控制在普通机床上加工时常出现的那一类误差源以外,还要有效地抑制数控加工时才可能出现的误差源。这些误差源对加工精度的影响及抑制的途径主要有以下几个方面:
①机床重复定位精度的影响
数控机床的定位精度是指数控机床各坐标轴在数控系统的控制下运动的位置精度,引起定位误差的因素包括数控系统的误差和机械传动的误差。而数控系统的误差则与插补误差、跟踪误差等有关。机床重复定位精度是指重复定位时坐标轴的实际位置和理想位置的符合程度。
②检测装置的影响
检测反馈装置也称为反馈元件,通常安装在机床工作台或丝杠上,相当于普通机床的刻度盘和人的眼睛,检测反馈装置将工作台位移量转换成电信号,并且反馈给数控装置,如果与指令值比较有误差,则控制工作台向消除误差的方向移动。数控系统按有无检测装置可分为开环、闭环与半闭环系统。开环系统精度取决于步进电动机和丝杠精度,闭环系统精度取决于检测装置精度。检测装置是高性能数控机床的重要组成部分。
③刀具误差的影响
在加工中心上,由于采用的刀具具有自动交换功能,因而在提高生产率的同时,也带来了刀具交换误差。用同一把刀具加工一批工件时,由于频繁重复换刀,致使刀柄相对于主轴锥孔产生重复定位误差而降低加工精度。
抑制数控机床产生误差的途径有硬件补偿和软件补偿。过去一般多采用硬件补偿的方法。如加工中心采用螺距误差补偿功能。随着微电子、控制、监测技术的发展,出现了新的软件补偿技术。它的特征是应用数控系统通信的补偿控制单元和相应的软件,以实现误差的补偿,其原理是利用坐标的附加移动来修正误差。
(7)提高加工精度的工艺措施
保证和提高加工精度的方法,大致可概括为以下几种:减小原始误差法、补偿原始误差法、转移原始误差法、均分原始误差法、均化原始误差法、“就地加工”法。
①减少原始误差
这种方法是生产中应用较广的一种基本方法。它是在查明产生加工误差的主要因素之后,设法消除或减少这些因素。例如细长轴的车削,现在采用了大走刀反向车削法,基本消除了轴向切削力引起的弯曲变形。若辅之以弹簧顶尖,则可进一步消除热变形引起的热伸长的影响。
②补偿原始误差
误差补偿法,是人为地造出一种新的误差,去抵消原来工艺系统中的原始误差。当原始误差是负值时人为的误差就取正值,反之,取负值,并尽量使两者大小相等;或者利用一种原始误差去抵消另一种原始误差,也是尽量使两者大小相等,方向相反,从而达到减少加工误差,提高加工精度的目的。
③转移原始误差
误差转移法实质上是转移工艺系统的几何误差、受力变形和热变形等。
误差转移法的实例很多。如当机床精度达不到零件加工要求时,常常不是一味提高机床精度,而是从工艺上或夹具上想办法,创造条件,使机床的几何误差转移到不影响加工精度的方面去。如磨削主轴锥孔保证其和轴颈的同轴度,不是靠机床主轴的回转精度来保证,而是靠夹具保证。当机床主轴与工件之间用浮动联接以后,机床主轴的原始误差就被转移掉了。
④均分原始误差
在加工中,由于毛坯或上道工序误差(以下统称“原始误差”)的存在,往往造成本工序的加工误差,或者由于工件材料性能改变,或者上道工序的工艺改变(如毛坯精化后,把原来的切削加工工序取消),引起原始误差发生较大的变化,这种原始误差的变化,对本工序的影响主要有两种情况:
误差复映,引起本工序误差;
定位误差扩大,引起本工序误差。
解决这个问题,最好是采用分组调整均分误差的办法。这种办法的实质就是把原始误差按其大小均分为n组,每组毛坯误差范围就缩小为原来的1/n,然后按各组分别调整加工。
⑤均化原始误差
对配合精度要求很高的轴和孔,常采用研磨工艺。研具本身并不要求具有高精度,但它能在和工件作相对运动过程中对工件进行微量切削,高点逐渐被磨掉(当然,模具也被工件磨去一部分)最终使工件达到很高的精度。这种表面间的摩擦和磨损的过程,就是误差不断减少的过程。这就是误差均化法。它的实质就是利用有密切联系的表面相互比较,相互检查从对比中找出差异,然后进行相互修正或互为基准加工,使工件被加工表面的误差不断缩小和均。 在生产中,许多精密基准件(如平板、直尺、角度规、端齿分度盘等)都是利用误差均化法加工出来的。
⑥就地加工法
在加工和装配中有些精度问题,牵涉到零件或部件间的相互关系,相当复杂,如果一味地提高零、部件本身精度,有时不仅困难,甚至不可能,若采用就地加工法(也称自身加工修配法)的方法,就可能很方便地解决看起来非常困难的精度问题。就地加工法在机械零件加工中常用来作为保证零件加工精度的有效措施。
数控机床怎么定位
数控机床
工件定位的基本原理
六点定位厦理
工件在空问具有六个自由度,即沿x、y、z三个直角坐标轴方向的移动自由度和绕这三个坐标轴的转动自由度因此,要完全确定工件的位置,就必须消除这六个自由度,通常用六个支承点(即定位元件)来限制关键的六个自由度,其中每一个支承点限制相应的一个自由度,在如y平面上,不在同一直线上的三个支承点限制了工件的王、于三个自由度,这个平面称为主基准面;在平面上沿长度方向布置的两个支承点限制了工件的拿两个自由度,这个平面称为导向平面;工件在xoz乎面上,被一个支承点限制了,一个自由度,这个平面称为止动平面。
①完全定位。工件的六个自由度全部被夹具中的定位元件所限制,而在夹具中占有完全确定的唯一位置,称为完全定位。
②不完全定位。根据工件加工表面的不同加工要求.定位支承点的数目可以少于六个。有些自由度对加工要求有影响,有些自由度对加工要求无影响,只要确定与加工要求有关的支承点,就可以用较少的定位元件达到定位的要求,这种定位情况称为不完全定位。不完全定位是允许的,下面举例说明。
在数控机床上工件定位与装夹的重要性
五点定位钻削加丁小孔,工件以内孔和一个端面在夹
具的心轴和平面上定位,限制工件五个自由度,相当于五个支承点定位。工件绕心轴的转动;不影响对小孔tD的加工要求。
四点定位铣削加工通槽B,工件以长外圆在夹具的双v形块上定位,限制工件的四个自由度,相当于四个支承点定位。工件的f、i两个自由度不影响对通槽B的加工要求。
③欠定位。按照加工要求应该限制的自由度投有被限制的定位称为盆定位。欠定位是不允许的+斟为欠定位保证不了加工要求。如铣削零件上的通槽,应该限制三个自由度以保证槽底面与A面的平行度及尺寸两项加工要求;应该限制两个自由度以保证槽侧面与B面的平行度及尺寸30mm±o lmm两项加工要求;自由度不影响通槽加工,可以不限制。如果没有限制就无法保证;如果莹、或萝没有限制,槽底与A面的平行度就不能保证。
定位精度和加工精度取决于
数控机床的加工精度最终要靠机床本身的精度来保证,数控机床精度包括几何精度、定位精度、重复定位精度和切削精度。
几何精度:又称静态精度,是综合反映数控机床关键零部件经组装后的综合几何形状误差。
定位精度:是表明所测量的机床各运动部位在数控装置控制下,运动所能达到的精度。根据实测的定位精度数值,可以判断出机床自动加工过程中能达到的最好的工件加工精度。是指零件或刀具等实际位置与标准位置(理论位置、理想位置)之间的差距,差距越小,说明精度越高。是零件加工精度得以保证的前提。
重复定位精度:是指在数控机床上反复运行同一程序代码所得到的位置精度的一致程度。是在在相同条件下(同一台数控机床上,操作方法不同,应用同一零件程序)加工一批零件所得到的连续结果的一致程度。
切削精度:是对机床的几何精度和定位精度在切削加工条件下的一项综合检查。
由上述可见,数控机床精度的高低分机械和电气两个方面,机械方面如主轴精度,如跳动、母线等;丝杠的精度;加工时夹具的精度,机床的刚性等等。电气方面则主要是控制方式如半闭环,全闭环等,还有反馈和补偿方式、加工时的插补精度等。所以机床精度高低并不取决于机床是不是全闭环。
数控车床为什么能控制的那么精确,靠的是什么?
主要是:
1:机床自身精度的提高,例如精密刀架,还有就是数控车床的传动丝杆与普通车床的传动丝杆完全不同,数控车床的传动丝杆采用的是精密滚珠丝杆,运动间隙与反向间隙极小,精度高。
2:数控车床丝杆的进给单位都是um级甚至更小,(1mm=1000um)
3:闭环、半闭环反馈装置,现在的数控车床多半具有这样的装置,这种装置能对传动系统的运动位置进行实时检测,一旦检测到传动系统运动“过头”或没有到位,它能将这个信息反馈给伺服系统进行补偿及调整。
综上所述,所以数控车床与传统车床相比,在加工精度上有了极大的提高。
什么是数控机床的定位精度
数控机床的定位精度是指机床各坐标轴在数控装置控制下运动所能达到的位置精度,属于静态精度,反映的是机床的原始精度。定位精度与机床的几何精度一样,会对机床切削精度产生重要影响,特别会影响到孔隙加工时的孔距误差。数控机床的定位精度又可以理解为机床的运动精度。普通机床由手动进给,定位精度主要决定于读数误差,而数控机床的移动是靠数字程序指令实现的,故定位精度决定于数控系统和机械传动误差。机床各运动部件的运动是在数控装置的控制下完成的,各运动部件在程序指令控制下所能达到的精度直接反映加工零件所能达到的精度,所以,定位精度是一项很重要的检测内容。
力;切削加工产生的内应力。 ②减小或消除内应力的措施一是采用适当的热处理工序。二是给工件足够的变形时间。三是零件结构要合理,结构要简单,壁厚要均匀。 6)数控机床产生误差的独特性 数控机床与普通机
重复定位精度和切削精度。几何精度:又称静态精度,是综合反映数控机床关键零部件经组装后的综合几何形状误差。定位精度:是表明所测量的机床各运动部位在数控装置控制下,运动所能达到的
,反映的是机床的原始精度。定位精度与机床的几何精度一样,会对机床切削精度产生重要影响,特别会影响到孔隙加工时的孔距误差。数控机床的定位精度又可以理解为机床的运动精度。普通机床由手动进给,定位精度主要决定于读数误差,而数控机床的移动是靠数字程序指令实现的,故定位精度决定于数控系统和机械传动误差。机床
。定位精度:是表明所测量的机床各运动部位在数控装置控制下,运动所能达到的精度。根据实测的定位精度数值,可以判断出机床自动加工过程中能达到的最好的工件加工精度。是指零
的眼睛,检测反馈装置将工作台位移量转换成电信号,并且反馈给数控装置,如果与指令值比较有误差,则控制工作台向消除误差的方向移动。数控系统按有无检测装置可分为开环、闭环与