文章导读:
细胞多采用包埋法原因
固定化技术包括包埋法、物理吸附法和化学结合法(交联法),由于细胞体积大,难以被吸附或结合,因此多采用包埋法.
故选:D.
细胞膜蛋白基因编码的蛋白质怎样定位到细胞膜上
这一类蛋白质肽链上有一段锚定序列,由疏水氨基酸组成,作为终止转移信号,它与信号肽不同,不是位于N端,而是位于肽链内部,使肽链插在膜上,这类蛋白有时有相间排列的信号序列,使肽链多次跨膜,形成跨膜蛋白。
微生物细胞包埋固定法有何优缺点
优点:
1,方法简便,将细胞与单体或聚合物一起聚凝,细胞被包埋在形成的聚合物之中。
2,条件温和,可选用不同的聚合物载体,不同的包埋系统和条件,以保持细胞的酶催化活性。
3,细胞不易渗漏,稳定性好。
4,有较高的细胞容量,聚合体中的细胞含量可达40%-70%。
缺点:
由于固定化细胞技术不够成熟,在固定化细胞的包埋材料的有无毒性及某性能,固定化细胞的强度及无杂菌性等方面还存在不足,固定化细胞技术主要用于污水处理。要将固定化技术更好地用于生产食品,药品等方面,就必需研究出更多更好的无毒价廉的包埋材料,不断探索出提高固定化细胞强度的方法。
细胞膜是结缔组织吗?什么细胞膜属于结缔组织?
结缔组织由大量的细胞间质和散在其中的细胞组成。细胞种类较多,数量较少,分散而无极性。细胞间质包括基质、纤维和组织液。基质是无定形的胶体样物质,纤维为细丝状,包埋在基质中。
结缔组织分布广泛,形态多样。如纤维性的肌腱、韧带、筋膜;流体状的血液;固体状的软骨和骨等。在机体内,结缔组织主要起支持、连接、营养、保护等多种功能。
所以细胞膜是否是结缔组织不科学,望采纳!
如何理解细胞的网络结构
细胞骨架是指真核细胞中的蛋白纤维网架体系。广义的细胞骨架包括细胞核骨架(核内骨架及分裂期染色体骨架和核纤层)、细胞质骨架(微丝、微管、中间纤维和微梁)、细胞膜骨架、细胞外基质。狭义的细胞骨架仅指细胞质骨架。
细胞骨架是真核细胞中主要分布于细胞质的一种纤维状结构系统,包括三种不同类型的纤维,即:微管、微丝和中间纤维。这些不同的纤维是由不同的蛋白质亚单位(骨架蛋白)以特定的方式聚合形成的。细胞骨架在细胞内形成支持网络系统,以维持细胞形态。各种细胞运动如肌肉收缩、鞭毛摆动、纤毛煽动、有丝分裂期的染色体移动及各种细胞运动均依赖于细胞骨架。
细胞骨架的一个最大特征是它的动力学可变性。这种动力学变化是适应于细胞内部的结构与功能而发生的,如有丝分裂期由微管组成的纺锤丝的延长与缩短。体外培养的成纤维细胞移动时,由细胞核至前进方向的微管不断延伸,相反方向的则不断缩短。延伸的细胞伪足的皮质部含有丰富的微丝,这些微丝或缩短甚至消失或重新恢复又延长。这些变化是在短时间内进行的,这种动力学变化的基础在于骨架蛋白不断聚合使纤维延长,或不断解聚使纤维缩短,甚至消失。因此,细胞骨架在细胞内处于不断的重组状态。
细胞骨架的另一重要特征是从细胞核到细胞膜包括某些细胞器与之发生联系,这种联系由于细胞骨架本身具有的动力学变化而呈可逆的,由于这种联系而形成的以细胞骨架系统为主体纤维网络,在其周围附着和包埋着各种其他细胞结构和一些生物大分子的细胞质基质,由于细胞骨架的动力学变化而赋予细胞质基质也呈动力学变化特征。这种基质可决定细胞器及一些生物大分子的定位及运动,因而对细胞器及一些生物大分子的移动、运输、分泌等许多重要细胞学功能甚至整个细胞的代谢活动的调节都有密切关系。
定形的胶体样物质,纤维为细丝状,包埋在基质中。结缔组织分布广泛,形态多样。如纤维性的肌腱、韧带、筋膜;流体状的血液;固体状的软骨和骨等。在机体内,结缔组织主要起支持、连接、营养、保护等多种功能。所以细胞膜是否是结缔组织不科学,望采纳!如何理解细胞的网络结构细胞