文章导读:
HTC Vive定位器怎么放
当我们发现StemVR界面图标右下角有感叹号标志时,鼠标放置在图标上数秒后,即可显示出固件过时的提醒,点击左下角的更新可用按钮,即可启动更新程序。
定位器更新时需要关闭所有VR应用程序,点击下图中的“是”选项后更新程序会自动帮你关闭,并且SteamVR进入暂停状态。接下来仅需要稍作等待,出现提示点击继续即可开始更新。要跟随着系统更新提示走下去,过程中建议不要停止更新或者操作其他页面的东西,因为就怕万一会更新失败。由于定位器有两个而更新程序一次只会更新一个定位器的固件,因此在更新成功后我们还需要点击“更新更多固件”选项,找到更新可用的定位器并点击,重复一次上面的操作,即可全部完成更新。更新成功后会有提示,如果除了基站更新外,其他的设备还未更新,你可以通过点击“更新更多固件”来完成更新想要的设备。更新全部完成后SteamVR会自动重启
两个激光定位器正常情况下将其固定在2米高的地方(根据空间不同可以适当的调整,但是定位器一定要比 佩戴头盔的人高20公分左右),同时定位器激光发射面要于墙壁大概成120度,且两个定位器间距离不能少 于2.5米
激光定位具体方法如下:
两个激光定位器正常情况下将其固定在2米高的地方(根据空间不同可以适当的调整,但是定位器一定要比佩戴头盔的人高20公分左右),同时定位器激光发射面要于墙壁大概成120度(向下有30-45度角),且两个定位器距离不能少于2.5米(对角线)
VR是什么?虚拟现实是什么?
虚拟现实”是来自英文“Virtual Reality”,简称VR技术。最早由美国的乔·拉尼尔在20世纪80年代初提出。虚拟现实技术(Ⅵ)是集计算机技术、传感器技术、人类心理学及生理学于一体的综合技术,其是通过利用计算机仿真系统模拟外界环境,主要模对象有环境、技能、传感设备和感知等,为用户提供多信息、三维动态、交互式的仿真体验
VR技术可以应用的领域比较多,目前运用较多的领域包括医疗、工程、军事、航空、航海等方面,譬如航空领域,航天飞行员在训练舱中面对屏幕进行各种驾驶操作,模拟舱外场景的屏幕图像随之变化,飞行员可得到仿真的训练感受。这种使人置身于图像环境的方式已经在飞机模拟训练中应用了几十年了。还有在娱乐、游戏、教育领域,增强现实的VR技术应用的前景更加广泛。在物理课上,学生们可以自己动手创造出降雨、水蒸气等自然景观,直观有趣、生动形象。这种新颖的教学方式也是通过VR技术得以实现的。可以这样说:VR能创造一个未来的,现在的,过去的,真实的或梦幻的世界。目前很多游戏已率先采用了此项技术,广受年轻人欢迎。
vr培训之vr靠哪些设备进行空间定位的
H5edu教育VR培训之VR空间定位的几大技术:
GPS卫星定位技术
GPS应该是大家最熟悉的定位技术,它是利用24颗工作卫星发射信号,通过时间差测出距离,进而确定待测点的位置。因为同时利用了24颗卫星,它能够排除一些误差较大的数据,使得定位更精确。
去年,国外一个戴上VR头盔开赛车的宣传视频火爆网络,它就是采用了GPS定位。视频如下:
GPS定位系统覆盖全球,而且是免费的,是非常理想的室外定位系统。但是其缺点也相当明显:信号受建筑物影响较大,衰弱很大,定位精度相对较低。而且,而定位不准会直接导致眩晕,所以在VR 领域很少采纳。
2. 影像识别(Opti Track)
应用这类定位技术最具代表性的就是Opti Track,很多人把Opti Track定义为光学定位,但是魔多君认为,把它定义为影像识别更为直观。先来看一个Opti Track应用的视频:
这类定位方案的基本原理简单的说就是利用多个红外发射摄像头、对室内定位空间进行覆盖,在被追踪物体上放置红外反光点(就是我们看到的),通过捕捉这些反光点反射回摄像机的图像,确定其在空间中的位置信息。
这类定位系统有着非常高的定位精度,延迟也能达到20ms以内。它的缺点是造价非常昂贵,且供货量很小。一个摄像头的价位就要1000美元以上,而要覆盖一个大概5x5米的定位空间,一般需要6~10个摄像头,成本之高,可想而知。
这类系统主要应用在类似线下体验店这样的商用场景,家用还太昂贵。
3. 红外光定位(Lighthouse)
这类定位技术的代表产品为HTC Vive 的Lighthouse 室内定位技术,它是目前业内精度最高的定位系统。基本原理就是利用定位光塔,对定位空间发射横竖两个方向扫射的激光,在被定位物体上放置多个激光感应接收器,通过计算两束光线到达定位物体的角度差,解算出待测定位节点的坐标。
它以两个垂直的面进行扫描Lighthouse 其实是由17个独立的光点二极管,可以无障碍地去定位方位。设计师非常巧妙和低成本的,详细可浏览魔多君之前的文章《我与Valve工程师讨论Lighthouse:不只精确,还很优雅!》
但是,这个定位系统也存在它的弊端,由于光路很容易被遮挡,遇到障碍物不能“拐弯”,不适用于较大的空间,Lighthouse的定位空间只有5*5米。
4. 低功耗蓝牙定位(iBeacons定位)
iBeacons是苹果公司2013年9月发布的移动设备用的操作系统配备的新功能。它的基本原理简单的说,就是利用有低功耗蓝牙(BLE)通信功能的设备(iPhone手机或其他设备)向周围发送自己特有的ID,接收到该ID的应用软件会根据其携带的信息采取一些动作。比如,在构建有iBeacon的商场,用户带着iPhone,走到某个商户门前,就会自动弹出这个商户相应的促销信息。
这种定位方案定位精度很低,对设备的要求也比较高,不太适用于VR行业的应用。
5.Wi-fi定位
具体来说,Wi-Fi能够定位原理是这样的:
1.每一个无线AP(路由器)都有一个全球唯一的MAC地址,并且一般来说无线AP在一段时间内不会移动;
2.设备在开启Wi-Fi的情况下,即可扫描并收集周围的AP信号,并获取到AP广播出来的MAC地址;
3、设备将这些能够标示AP的数据发送到位置服务器,服务器检索出每一个AP的地理位置,并结合每个信号的强弱程度,计算出设备的地理位置并返回到用户设备;
但是,需要注意的是,位置服务商要不断更新、补充自己的数据库,以保证数据的准确性。
目前wifi定位系统节点耗费差不多20美元,精度为米级,也不适用于VR领域的空间定位。
6.超声波定位
这种定位技术的灵感来源于蝙蝠。蝙蝠在夜间飞行的时候,喉头发出一种超过人的耳朵所能听到的高频声波(即超声波),这种声波沿着直线传播,一碰到物体就迅速返回来,它们用耳朵接收了这种返回来的超声波,使它门能作出准确的判断,引导它们飞行。
在实际应用中,超声波定位的技术也有很多方案,这里介绍一个最简单的:利用三面垂直的墙壁进行定位。在三面有墙壁的场所,你使用的设备可以理解为空间中某一个信号发射点,
它向周围发射超声波,测距系统会利用发射和反射回来的声波产生的时差,乘以波速即可以算出距离。
利用三面垂直的墙壁进行定位
超声波定位的成本较低,但是由于超声波在空气中的衰减较大,它试用于较小范围,一般为几十米,测量的精度为厘米级。目前应用于无人车间等场所的移动物体。
“光学+无线”最适合VR
众所周知,VR 眩晕是一个非常大的难题,这也意味着,它对定位精度的要求非常高,所以在小范围内,光学是最佳的选择。当然,在室外的大空间情况下,“光学+无线”是非常好的方法,在遇到障碍物时,无线定位可以对光学进行补充。这样既保证了精度,也解决了光学定位容易被遮挡的难点。
VR中的光学定位及姿态捕捉技术难点在哪
VR定位动捕技术难点在哪看4大因素要考虑
最近有文章解析了因为追星仪和陀螺仪的出错,加上科学家写反喷气代码导致了造成了价值19亿的一台名为逗瞳地的X射线太空望远镜被玩坏了。实际上,追星仪和陀螺仪实现的类似于VR中的光学定位及姿态捕捉。一直以来,大家都在说VR定位动捕技术难,那到底难在哪里呢看作者系VR行业从业者,本文将会探讨下这个问题。
我相信,逗瞳地真实的毁灭原因一定比文章中描述的要复杂很多,我写这篇文章也不是为了跟大家探讨逗瞳地,而是想跟大家聊一下由此事件引发的一些思考。
| 逗瞳地和VR中的光学定位及姿态捕捉
瞳的追星仪,在文章中是这样描述的逗追星仪是卫星上一个判断自己方位的仪器……总的来说就是一个小相机,通过跟踪拍摄背景里一些亮的星星的位置… 用来判断自己所指向的方位……地。
为什么总说VR定位动捕技术难,它究竟难在哪里看
追星仪的定位技术大概是目标物体(即瞳本身)拍摄背景中的星星,根据得到的图像及所识别出的星星的位置来获取自身的方位信息。而瞳的陀螺仪则用来侦测瞳自身的空间姿态。所以,追星仪和陀螺仪实际上实现的类似于VR中的光学定位及姿态捕捉。
(1) 光学定位技术
VR中的光学定位技术是利用摄像机拍摄目标物体,根据得到的目标图像及摄像机自身的位置信息推算出目标物体的位置及姿态等信息。根据标记点发光技术不同,光学定位技术还分为主动式和被动式两种。
具体实现流程:定位物体上布满标记点,标记点可以自主发射光信号或者反射定位系统发射来的点信号,使得摄像头拍摄的图像中标记点与周围环境可以明显区分。摄像机捕捉到目标物上标记点后,将多台摄像机从不同角度采集到的图像传输到计算机中,再通过视觉算法过滤掉无用的信息,从而获得标记点的位置。该定位法需要多个 CCD 对目标进行跟踪定位,需要至少两幅以上的具有相同标记点的图像进行亚像素提取、匹配操作计算出目标物的空间位置。实现流程图如下:
为什么总说VR定位动捕技术难,它究竟难在哪里看
光学定位技术实现流程
目前,光学定位技术在国际上最受认可的是Optitrack。OptiTrack定位方案适用于游戏与动画制作,运动跟踪,力学分析,以及投影映射等多种应用方向,在VR行业有着非常大的影响力。
为什么总说VR定位动捕技术难,它究竟难在哪里看
(2)惯性动作捕捉
陀螺仪的工作原理是通过测量三维坐标系内陀螺转子的垂直轴与固定方向之间的夹角,并计算角速度,通过夹角和角速度来判别物体在三维空间的运动状态。
它的强项在于测量设备自身的旋转运动。陀螺仪用于姿态捕捉,集成了加速度计和磁力计后,共同应用在惯性动作捕捉系统。
惯性动作捕捉系统需要在运动物体的重要节点佩戴集成加速度计,陀螺仪和磁力计等惯性传感器设备,传感器设备捕捉目标物体的运动数据,包括身体部位的姿态、方位等信息,再将这些数据通过数据传输设备传输到数据处理设备中,经过数据修正、处理后,最终建立起三维模型,并使得三维模型随着运动物体真正、自然地运动起来。
为什么总说VR定位动捕技术难,它究竟难在哪里看
| VR定位动捕技术到底难在哪里看
前文提到,逗瞳地最终没有避免毁灭的命运,当然我们得说这次毁灭有一些人为的可避免的错误造成,但无法否认的事实是它耗费了人类价值19亿的资源。这也从侧面证实了定位及动捕技术难度之高。
当然,应用于VR行业中时,对于精度等的要求不会有逗瞳地那么高,但为了能给使用者带来超强沉浸感体验,定位及动捕的精度、延迟、刷新率等也一定要达到非常高的水平。很多人知道2016年被称为VR的元年,但是又有多少人知道VR自1963年被提出至今耗费了多少科学家、工程师的心血看
读者可能会有疑问,大家一直在说VR定位动捕技术难,那到底难在哪里呢看接下来笔者就来谈谈VR定位动捕技术的难点。
(1)人体运动复杂性
由于在现实世界里面,逗场景地是相对静止的,我们之所以看到眼前的东西在动,是因为我们头部、眼部、身体等在移动,使得眼前的逗场景地形成了一个动画。而虚拟现实就是要模拟出现实世界的这种逗动画地,也就是说在虚拟现实的设备中,画面要根据人的这些动作做出相应的调整才可以,而这些动作看似使用定位、陀螺仪等设备就可以解决,但其实则不然。人体的动作可以看作是复杂且有一定规律的一系列动作组合而成,为了完成一个动作,每一个完整的动都可以分解为各个肢体的动作,各个肢体之间的动作既相互独立又相互限制。人体的各种动作是有多个自由度组成,其复杂性使得计算机追踪时存在着很多的困难和挑战。
这里给大家举个例子:
在一些大家很喜欢的搏斗或者射击游戏中,我们经常需要作出身体快速移动,头部快速转动,以及高速的转身、下蹲等动作,一方面这些动作会带来我们实现的变化,眼前所看到的画面也会跟随变化,且虚实情况也有区别;
另一方面,这些动作也必须会带来虚拟世界中的一些反馈,例如瞄准僵尸打出一颗子弹,则虚拟世界中的僵尸将受伤或者倒下。想要让使用者有真实的体验,那么追踪技术就必须可以已非常高的精度实现定位及动捕,否则就不能算是真正的虚拟现实了。
为什么总说VR定位动捕技术难,它究竟难在哪里看
(2)精度问题
定位及动作捕捉精度,对于VR设备非常的重要。如果定位及动作捕捉精度不够高,会严重影响VR体验效果,也失去了虚拟现实的本质。影响精度问题的因素包括遮挡、干扰以及算法自身的限制等。
遮挡是各种定位及动捕系统最常见的工作失效原因之一。
例如光学定位系统中:当扫描光线被用户或物体遮挡时,空间点三维重构由于缺少必要的二维图像中的特征点间对应信息,容易导致定位跟踪失败。遮挡问题可以通过多视角光学系统来减轻,但这又造成了该系统又一大缺陷——价格过于昂贵。以Optitrack为例,Optitrack是国际上非常受认可的光学定位技术,如果有足够的摄像机,Optitrack定位及动捕技术可以很好地解决遮挡问题,具有非常高的精度。但是Optitrack摄像机的价格却让多添加几个摄像机变得不那么容易。
干扰包括外界电磁波干扰和自身设备间相互干扰。不管是光学定位还是激光定位,对外界的电磁波干扰都非常敏感,特别是当设备使用无线的方式通信时,如果存在同波段的电磁干扰,就会造成卡顿、失灵等现象,严重影响体验效果。
为什么总说VR定位动捕技术难,它究竟难在哪里看
还有一个因素是算法本身的限制,例如惯性式动作捕捉技术。
惯性式动作捕捉系统采用MEMS三轴陀螺仪、三轴加速度计和三轴磁力计组成的惯性测量单元(IMU, Inertial Measurement Unit)来测量传感器的运动参数。而由IMU所测得的传感器运动参数有严重噪声干扰,MEMS 器件又存在明显的零偏和漂移, 使得惯性式动作捕捉系统无法长时间地对人体姿态进行精确的跟踪。
目前对于这个问题,G-Wearables的解决方案或许可以参考,其利用激光定位、反向动力学、惯性式动作捕捉相融合的算法来解决,从CES Asia展会上发布的STEPVR大盒子的体验来看,融合算法确实较好地解决了惯性式动捕的零偏和漂移问题,实现了1:1精准的动作还原。当然,这款产品的其他方面还需要消费者们自行去体验,与本文主题无关就不再赘述。
为什么总说VR定位动捕技术难,它究竟难在哪里看
(3)快速运动时的定位及动捕问题
快速运动时的定位及动捕一直是VR行业一大难题,甚至现在很多公司都放弃了快速运动时的定位及动捕,通过VR内容控制用户不要有快速的动作来避免这一问题,但这终究无法从根源上解决问题。
那为什么说,快速运动时的定位及动捕难呢看
对于光学定位来说,难点在于运动模糊。
如果目标物体移动过于快速,则会出现运动模糊,即由于摄像设备和目标在曝光瞬间存在相对运动而形成的一种现象。这种现象很常见,我们平时用手机拍摄人物时,如果人物快速移动(例如奔跑、迅速起身等),则我们拍摄的图片即是模糊的,在VR的光学定位中是一样的。
光学定位系统利用多台摄像头拍摄目标物体,再利用所获得的图像信息及摄像头的位置信息来最终推算目标的空间位置,并基于这样的空间位置通过IK算法或者惯性传感器等来推算目标物体的动作。那么如果目标物体处于快速运动中,则摄像头拍摄的图像就存在模糊,信息不可用,也就无法实现精准的定位。因此基于光学定位的VR系统,在目标物体快速移动时会出现卡顿、跳点等现象。
为什么总说VR定位动捕技术难,它究竟难在哪里看
对于激光定位技术来说,难点在于两束激光扫描存在时间间隔。
激光定位技术需要水平、垂直两个方向上的激光扇面对整个定位空间进行扫描,目标物体绑定的传感器必须接收到水平、垂直两个方向上的激光后方可进行定位,缺一不可。然而,这两个方向上的激光扇面是先后扫描,也就是存在时间差,如果目标物体迅速移动,则会出现水平和垂直两个方向上激光扫描到传感器时传感器所在的位置不一样,也就无法定位准确,进而影响动作捕捉。
障碍物时,无线定位可以对光学进行补充。这样既保证了精度,也解决了光学定位容易被遮挡的难点。VR中的光学定位及姿态捕捉技术难点在哪VR定位动捕技术难点在哪看4大因素要考虑最近有文章解析了因为追星仪和陀螺仪的出错,加上科学家写反喷气代码导致了造成了价值19亿的一
式动捕的零偏和漂移问题,实现了1:1精准的动作还原。当然,这款产品的其他方面还需要消费者们自行去体验,与本文主题无关就不再赘述。为什么总说VR定位动捕技术难,它究竟难在哪里看(3)快速运动时的定位及动捕问题快速运动时的定位及动捕一直是VR行业一大难题
多人知道2016年被称为VR的元年,但是又有多少人知道VR自1963年被提出至今耗费了多少科学家、工程师的心血看读者可能会有疑问,大家一直在说VR定位动捕技术难,那到底难在哪里呢看接下来笔者就来谈谈VR定位动捕技术的难点。(1)人体运动复杂性由于在现实世界里面,逗场景地是相对静止的,我们之所以看
“光学+无线”最适合VR众所周知,VR 眩晕是一个非常大的难题,这也意味着,它对定位精度的要求非常高,所以在小范围内,光学是最佳的选择。当然,在室外的大空间情况下,“光学+无线”是非常好的方法,在遇到障碍物时,无线