神经网络定位算法_神经网络定位算法公式

hacker|
112

文章导读:

机器视觉定位是什么?和机器视觉检测有什么不同?

视觉定位类项目通常结合机器人学,轴组运动学控制,常常使用仿射变换,几何学,手眼标定等算法,在数学原理层面要熟悉常用的矩阵转换公式,几何平面学公式等。追求的是高精度定位效果,通常定位抓取精度在0.01mm。应用场景包括2D定位,3D无序定位抓取等。需要对自动化设备,机器人学等十分了解。机器视觉检测通常指的是目标检测和缺陷检测,在工业上,需要对CCD传感器得到的图像做图像处理找到某些缺陷,在算法层方面需要掌握Blob分析,预处理算法,边缘提取等,偏重于图像处理本身。在计算机视觉方向,视觉检测还有目标检测,通常用卷积神经网络实现对目标的检测和分类,比如说现在的人脸识别,自动驾驶等。综合以上,机器视觉定位更偏向于视觉算法和自动化结合,视觉检测更注重于图像算法本身。

Wi-Fi定位的原理是什么?

实际上这是将室内定位算法转换成一个分类问题。首先是第一步,有人先去室内的场景将楼道,办公室等空间划分为一个个大小相同的网格,每个网格对应着一个位置标号ID,在每个网格都采集Wifi信号强度,例如收到哪些无线接入点AP的信号,信号强度RSS是多少,这样就构成一组代表这个网格位置的特征参数。然后第二步是训练采集到的数据生成分类器,训练的方法有很多,有支持向量机,人工神经网络什么的,具体细节就不赘述了,目标就是任意输入一组Wifi信号强度数据,就应该能获得这组数据所对应的类别,这里的类别就是位置ID。

抖音、快手、小红书、今日头条、百家号、知乎将展示用户 IP 归属地,将带来哪些影响?

我认为抖音、快手、小红书、今日头条等凭条展示用户IP归属地可以适当的减少网络暴力和扰乱社会的各种网络谣言,让这些网络上的造谣者能够不再像以前一样可以在网络上肆无忌惮的发言,让网络环境变得更加健康。

1、让网络造谣者不再肆无忌惮

网络作为现在信息传播的主渠道,真的是各种各样的消息漫天飞,以前新媒体没有兴起的时候虽然了解消息的渠道比较单一,时间比较长,但是更多的都是通过专业的媒体,消息也都更加的准确,但是随着这些年的发展,更多的人选择通过网络去了解新闻,而一些人为了流量真的是无所不用其极,明明是假的,却能给你编出花来,说的更真的一样,但是网民们更多的是对事情不了解的,所以就让造谣者的消息“做实”,而这不仅对网民的判断造成了影响,同样也对被造谣的对象有很大的影响。

很多时候当真相大白的时候网民们可能会感觉到是自己理解错了,但是对于被造谣者的影响确却是很大的,不仅要受到网络上面的不良言语的攻击,可能身边的人都会对他有所怀疑,最主要是有口难言,不说吧,会让人感觉默认了,反驳吧,还有可能成为狡辩,很多时候网络上的“实锤”最后都没有锤到对的地方!

2、让网络喷子们能感受到害怕

有的人在现实中往往是很寡言的人,而且很温和,但是一旦到网络上却成为了别人眼中的喷子“大神”!网络毕竟是虚拟的空间,很多人在现实中找不到存在感,所以都去网络上找存在感,因为网络上的一些话哪怕是说了,别人也不知道你是谁,这就让喷子们可以在评论去各种留言,而现在现实IP归属,会让这些人心里害怕,不能再像以前一样做一个匿名的喷子了!

3、让水军原形毕露

这些年网络上的水军真的不少,水军跟造谣者一样会引导用户的控评,很多不明缘由的用户一看大部分人都是一个观点的很自然就就会认为这个观点是对的,所以也无脑的支持,但是现在这种情况就可以让这些水军们无处藏身,IP地址的展示将会让他们的控评被大家所看到,而先要改变的额话,不仅成本要高,也会让雇佣水军的人感到“肉疼”。

网络不是不法之地,不管是水军还是网络喷子其实都是身不正,影子也歪的,所以展示IP归属可以更好的让这些在现实中不敢发表的言论现在也同样会在网络上有所顾忌,这样虽然不能一下子达到让网络暴力消失,但是至少也会有不错的减少效果。

神经网络是什么

神经网络是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。

生物神经网络主要是指人脑的神经网络,它是人工神经网络的技术原型。人脑是人类思维的物质基础,思维的功能定位在大脑皮层,后者含有大约10^11个神经元,每个神经元又通过神经突触与大约103个其它神经元相连,形成一个高度复杂高度灵活的动态网络。作为一门学科,生物神经网络主要研究人脑神经网络的结构、功能及其工作机制,意在探索人脑思维和智能活动的规律。

人工神经网络是生物神经网络在某种简化意义下的技术复现,作为一门学科,它的主要任务是根据生物神经网络的原理和实际应用的需要建造实用的人工神经网络模型,设计相应的学习算法,模拟人脑的某种智能活动,然后在技术上实现出来用以解决实际问题。因此,生物神经网络主要研究智能的机理;人工神经网络主要研究智能机理的实现,两者相辅相成。

扩展资料:

神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。主要的研究工作集中在以下几个方面:

1、生物原型

从生理学、心理学、解剖学、脑科学、病理学等方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。

2、建立模型

根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。

3、算法

在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。

神经网络用到的算法就是向量乘法,并且广泛采用符号函数及其各种逼近。并行、容错、可以硬件实现以及自我学习特性,是神经网络的几个基本优点,也是神经网络计算方法与传统方法的区别所在。

参考资料:百度百科-神经网络(通信定义)

神经网络算法是什么?

Introduction

--------------------------------------------------------------------------------

神经网络是新技术领域中的一个时尚词汇。很多人听过这个词,但很少人真正明白它是什么。本文的目的是介绍所有关于神经网络的基本包括它的功能、一般结构、相关术语、类型及其应用。

“神经网络”这个词实际是来自于生物学,而我们所指的神经网络正确的名称应该是“人工神经网络(ANNs)”。在本文,我会同时使用这两个互换的术语。

一个真正的神经网络是由数个至数十亿个被称为神经元的细胞(组成我们大脑的微小细胞)所组成,它们以不同方式连接而型成网络。人工神经网络就是尝试模拟这种生物学上的体系结构及其操作。在这里有一个难题:我们对生物学上的神经网络知道的不多!因此,不同类型之间的神经网络体系结构有很大的不同,我们所知道的只是神经元基本的结构。

The neuron

--------------------------------------------------------------------------------

虽然已经确认在我们的大脑中有大约50至500种不同的神经元,但它们大部份都是基于基本神经元的特别细胞。基本神经元包含有synapses、soma、axon及dendrites。Synapses负责神经元之间的连接,它们不是直接物理上连接的,而是它们之间有一个很小的空隙允许电子讯号从一个神经元跳到另一个神经元。然后这些电子讯号会交给soma处理及以其内部电子讯号将处理结果传递给axon。而axon会将这些讯号分发给dendrites。最后,dendrites带着这些讯号再交给其它的synapses,再继续下一个循环。

如同生物学上的基本神经元,人工的神经网络也有基本的神经元。每个神经元有特定数量的输入,也会为每个神经元设定权重(weight)。权重是对所输入的资料的重要性的一个指标。然后,神经元会计算出权重合计值(net value),而权重合计值就是将所有输入乘以它们的权重的合计。每个神经元都有它们各自的临界值(threshold),而当权重合计值大于临界值时,神经元会输出1。相反,则输出0。最后,输出会被传送给与该神经元连接的其它神经元继续剩余的计算。

Learning

--------------------------------------------------------------------------------

正如上述所写,问题的核心是权重及临界值是该如何设定的呢?世界上有很多不同的训练方式,就如网络类型一样多。但有些比较出名的包括back-propagation, delta rule及Kohonen训练模式。

由于结构体系的不同,训练的规则也不相同,但大部份的规则可以被分为二大类别 - 监管的及非监管的。监管方式的训练规则需要“教师”告诉他们特定的输入应该作出怎样的输出。然后训练规则会调整所有需要的权重值(这是网络中是非常复杂的),而整个过程会重头开始直至数据可以被网络正确的分析出来。监管方式的训练模式包括有back-propagation及delta rule。非监管方式的规则无需教师,因为他们所产生的输出会被进一步评估。

Architecture

--------------------------------------------------------------------------------

在神经网络中,遵守明确的规则一词是最“模糊不清”的。因为有太多不同种类的网络,由简单的布尔网络(Perceptrons),至复杂的自我调整网络(Kohonen),至热动态性网络模型(Boltzmann machines)!而这些,都遵守一个网络体系结构的标准。

一个网络包括有多个神经元“层”,输入层、隐蔽层及输出层。输入层负责接收输入及分发到隐蔽层(因为用户看不见这些层,所以见做隐蔽层)。这些隐蔽层负责所需的计算及输出结果给输出层,而用户则可以看到最终结果。现在,为免混淆,不会在这里更深入的探讨体系结构这一话题。对于不同神经网络的更多详细资料可以看Generation5 essays

尽管我们讨论过神经元、训练及体系结构,但我们还不清楚神经网络实际做些什么。

The Function of ANNs

--------------------------------------------------------------------------------

神经网络被设计为与图案一起工作 - 它们可以被分为分类式或联想式。分类式网络可以接受一组数,然后将其分类。例如ONR程序接受一个数字的影象而输出这个数字。或者PPDA32程序接受一个坐标而将它分类成A类或B类(类别是由所提供的训练决定的)。更多实际用途可以看Applications in the Military中的军事雷达,该雷达可以分别出车辆或树。

联想模式接受一组数而输出另一组。例如HIR程序接受一个‘脏’图像而输出一个它所学过而最接近的一个图像。联想模式更可应用于复杂的应用程序,如签名、面部、指纹识别等。

The Ups and Downs of Neural Networks

--------------------------------------------------------------------------------

神经网络在这个领域中有很多优点,使得它越来越流行。它在类型分类/识别方面非常出色。神经网络可以处理例外及不正常的输入数据,这对于很多系统都很重要(例如雷达及声波定位系统)。很多神经网络都是模仿生物神经网络的,即是他们仿照大脑的运作方式工作。神经网络也得助于神经系统科学的发展,使它可以像人类一样准确地辨别物件而有电脑的速度!前途是光明的,但现在...

是的,神经网络也有些不好的地方。这通常都是因为缺乏足够强大的硬件。神经网络的力量源自于以并行方式处理资讯,即是同时处理多项数据。因此,要一个串行的机器模拟并行处理是非常耗时的。

神经网络的另一个问题是对某一个问题构建网络所定义的条件不足 - 有太多因素需要考虑:训练的算法、体系结构、每层的神经元个数、有多少层、数据的表现等,还有其它更多因素。因此,随着时间越来越重要,大部份公司不可能负担重复的开发神经网络去有效地解决问题。

NN 神经网络,Neural Network

ANNs 人工神经网络,Artificial Neural Networks

neurons 神经元

synapses 神经键

self-organizing networks 自我调整网络

networks modelling thermodynamic properties 热动态性网络模型

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

网格算法我没听说过

好像只有网格计算这个词

网格计算是伴随着互联网技术而迅速发展起来的,专门针对复杂科学计算的新型计算模式。这种计算模式是利用互联网把分散在不同地理位置的电脑组织成一个“虚拟的超级计算机”,其中每一台参与计算的计算机就是一个“节点”,而整个计算是由成千上万个“节点”组成的“一张网格”, 所以这种计算方式叫网格计算。这样组织起来的“虚拟的超级计算机”有两个优势,一个是数据处理能力超强;另一个是能充分利用网上的闲置处理能力。简单地讲,网格是把整个网络整合成一台巨大的超级计算机,实现计算资源、存储资源、数据资源、信息资源、知识资源、专家资源的全面共享。

5条大神的评论

  • avatar
    访客 2022-08-18 上午 11:38:37

    纹识别等。The Ups and Downs of Neural Networks ----------------------------------------------------------------------

  • avatar
    访客 2022-08-18 下午 08:51:38

    络是由数个至数十亿个被称为神经元的细胞(组成我们大脑的微小细胞)所组成,它们以不同方式连接而型成网络。人工神经网络就是尝试模拟这种生物学上的体系结构及其操作。在这里有一个难题:我们对生物学上的神经网络知道的不多

  • avatar
    访客 2022-08-18 下午 04:41:15

    影子也歪的,所以展示IP归属可以更好的让这些在现实中不敢发表的言论现在也同样会在网络上有所顾忌,这样虽然不能一下子达到让网络暴力消失,但是至少也会有不错的减少效果。神经网络是什么神经网络是一种模仿动物神经网络行为特征,进行分布式并

  • avatar
    访客 2022-08-18 下午 06:27:02

    +网格算法我没听说过好像只有网格计算这个词网格计算是伴随着互联网技术而迅速发展起来的,专门针对复杂科学计算的新型计算模式。这种计算模式是利用互联网把分散在不同地理位置的电脑组织成一个“虚拟的超级计算机”,其中每一台参与计算的计算机就是一个“节点”,而整个计算是由成千上万个“节

  • avatar
    访客 2022-08-18 上午 10:39:19

    神经网络是什么神经网络是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。生物神经网络主要是指人脑的神经网络,它是人工神经网络的技术原型。人脑是人类思维的物质基础,思维的功

发表评论