文章导读:
解剖学上的大脑机能定位区
大脑皮层运动区是调节躯体运动机能的高级中枢。它通过锥体系和锥体外系下行通路,控制脑干和脊髓运动神经元的活动,从而控制肌肉运动。电刺激皮层后发生的效应在人和高等动物的中央前回最为明显,称为皮层运动区机能定位或运动的躯体定位结构。在较低等的哺乳动物,如兔和大鼠,大脑皮层运动机能定位已具一定雏形。 通过电刺激大脑皮层运动区引起躯体运动效应,观察皮层运动区机能定位现象,进一步领会皮层运动区对躯体运动的调节作用。
大脑皮层是由什么构成的呢?
我们都知道,组织是由细胞构成,就像社会是由每个人组成的一样。大脑皮层也是由多种类型和形态的细胞构成。大脑皮层的细胞首先从脑室区(VZ)分裂产生,然后在胚胎发育的过程中,慢慢迁移定位到亚脑室区(SVZ)、皮层表面区域(CP),这样就大致形成了皮层。
脑室区的细胞分裂过程十分有意思。一般正常的细胞分裂,细胞核是不会上下迁移的,但是在脑室区的神经干细胞的分裂,细胞核(图片中红色染色部分)会沿着神经纤维移动,在分裂完成后,如果子细胞是干细胞,细胞会依旧定位在脑室区,如果子细胞是成熟的神经元,就会直接迁移到皮层表面区域。细胞们也是很聪明的呢!
大脑皮层的主要躯体运动区在哪
1. 皮质运动区
位于中央前回(4区),是支配对侧躯体随意运动的中枢。它主要接受来自对侧骨骼肌、肌腱和关节的本体感觉冲动,以感受身体的位置、姿势和运动感觉,并发出纤维,即锥体束控制对侧骨骼肌的随意运动。
2. 皮质运动前区
位于中央前回之前(6区),为锥体外系皮质区。它发出纤维至丘脑、基底神经节、红核、黑质等。与联合运动和姿势动作协调有关,也具有植物神经皮质中枢的部分功能。
大脑的功能分区是什么?
按照大脑解剖的角度来划分:
1、颅骨:人类的大脑柔嫩程度超过婴儿的皮肤,完全依靠颅骨这个“鸡蛋壳”保护着。
18世纪德国解剖学家Franz Joseph Gall(1758—1828)认为,一个人的心理历程与大脑皮质紧密相关,而皮质的发展会改变颅骨的形状,因此可以通过颅骨来判断一个人的心理特征。
2、脑干:脑干与脊髓相连,负责控制许多无意识的行为——呼吸、心跳、消化等。脑干的位置在人的颈部往上一点。
3、小脑:小脑属于后脑的一部分,在脑干的上面一点,负责肌肉的协调、神经反射和身体平衡。
4、大脑:可以理解为大脑的外层——大脑皮层,包括前脑的新皮质,是人类思维产生的最主要部分。
5、左半脑:控制人的具体行为,如演讲、写作、语言和运算。
6、右半脑:控制人的想象、空间思维、音乐、直观感受。
7、额叶:控制一个人的个性、情感、计划行为,包括分辨是非、抽象思维。
8、顶叶:与触觉和四肢活动相关,与枕骨连接处控制着说话和语言理解能力。
9、枕叶:与视觉相关。
10、颞叶:在脑的两侧,与耳朵齐平,负责听觉和短时记忆。
按照胚胎发展的角度来划分,大脑可以分为五大部分:终脑、间脑、中脑、后脑、末脑。
前脑:前脑分为终脑、间脑
终脑包括新皮质、嗅球、边缘系统、基底节、侧脑室
间脑包括丘脑、上丘脑、下丘脑、松果体、第三脑室
中脑包括顶盖、被盖、大脑脚、部分网状结构、大脑导水管
后脑包括后脑和末脑,后脑包括脑桥、小脑、部分网状结构、第四脑室
末脑包括延脑、第四脑室。
大脑的皮质部分控制着人类复杂的心理、逻辑等思维,支配着人类高层次的心理活动。除了按照解剖把大脑皮质分解为四个脑叶外,也可以按照一些其它的方法把皮质划分为不同的脑区。
1958年,Wilder Penfield(1891—1976)和Edwin Boldrey(1906—1988)根据电刺激的结果,完成大脑功能分区图。
此外,德国的神经学家布罗德曼在1909年,更具皮质细胞结构的相似性——细胞的密度、细胞形状、细胞大小等,把大脑皮质划分成52个区,着叫做布罗德曼分区。
这样的分区具有十分重要的意义,感觉和运动的功能通常可以风味原级、次级、高级三个层次,各层次从布罗德曼分区来看,属于不同的部位:
视觉:原级17分区、次级18、19分区
听觉:原级41分区、次级22、42分区
体觉:原级1、2、3分区、次级5、7分区
运动:原级4分区、次级6分区
眼动:8分区
语言:44分区
高级感觉皮质区:7、21、22、37、39、40
高级运动皮质区:9、10、11、45、46、47
一般说来原级皮质区只对特定的感觉次级反应,次级皮质区与原级皮质区相连,处理由特定感觉通道传递过来的信息,次级皮质区损伤将导致知觉障碍。
高级皮质区一般位于顶叶、额叶、颞叶和枕叶各次级皮质区边界围成的范围内,是顶、颞、枕三脑叶重叠区域,各种感觉信息在这个区域内整合成高层次的认知,此区受损会导致认知障碍。
扩展资料:
大脑主要包括左、右大脑半球,是中枢神经中最大和最复杂的结构,也是最高部位,是调节机体功能的器官,也是意识、精神、语言、学习、记忆和智能等高级神经活动的物质基础。
大脑半球表面呈现不同的沟或裂,沟、裂之间隆起的部分叫脑回。大脑半球借沟和裂分为5叶,即额叶、颞叶、顶叶、枕叶和脑岛。
大脑半球表层为灰质,深层为髓质。髓质内含有神经纤维和核团,其中有4对核团位于脑底部称基底神经节(核),包括尾状核、豆状核、杏仁核和屏状核。尾状核与豆状核又称为纹状体。纹状体损伤会产生舞蹈病(肌张力下降,运动过多过快)及震颤麻痹(当中脑黑质发生病变时),全身肌紧张增高,运动迟缓等。
半球内的白质有各种走向的,如连合左、右两半球的纤维,连接同侧半球的纤维,联系大脑皮质和脑干,脊髓的上下行纤维,后者都要经过内囊,在脑的水平切面上,内囊是宽厚的白质层,分3部分即内囊前脚、内囊后脚和内囊膝。
各部分都有相应的纤维束通过。内囊损伤可引起偏瘫、偏音和偏身感觉丧失的三偏症。大脑半球内部的腔隙叫侧脑室,内容脑脊液。
人体功能在大脑皮质上有定位关系,如感觉区、运动区等在大脑皮质上都有对应位置,实现大脑皮质的感觉功能和调节躯体运动等功能。
人类有语言和思维,中枢偏于皮质左侧,称为优势半球。如果这些中枢受损将产生与语言有关的症。
如运动性语言中枢受损,患运动性失语症,虽然与发音有关的肌肉未瘫痪,患者却不能说话。若视运动性语言中枢受损患失写症,虽然手部及其他运动功能仍然正常,但不能做书写绘画等精细运动。若听性觉语言中枢损害可患感觉性失语症,病人能听到别人讲话,但不理解所讲的内容。
近年来研究发现,右侧半球也有特殊的重要功能,如对空间的辨认,深度知觉、触觉、音乐欣赏等。人类左侧半球在语词活动功能上占优势,右侧半球在非语词认识功能上占优势,但也并非绝对,即左侧半球也有一定的非语词性认识功能,右侧半球也有一定的语词活动功能。
参考资料来源:百度百科-大脑
大脑皮层m1区在哪个位置?
大脑皮质运动区通常又被分为初级运动区和次级运动区。
初级运动区(M1)位于中央前回,相当于BA4区。
它位于中央沟的前方,占中央前回的大部分。
前面为运动前区,后面为中央沟前壁,下至额下回水平。
在大脑内侧面为中央旁小叶。
大脑皮层简介
目录
1 拼音 2 英文参考 3 概述 4 大脑皮层的电活动 5 大脑皮层对内脏活动的调节
5.1 新皮层 5.2 边缘叶
6 大脑皮层对躯体运动的调节
6.1 大脑皮层运动区 6.2 锥体系及其功能 6.3 锥体外系
1 拼音
dà nǎo pí céng
2 英文参考
pallium
3 概述
包被大脑半球沟和回外层的灰质,是调节机体机能的最高部位。哺乳动物出现了高度发达的大脑皮层,并随着神经系统的进化而进化。新发展起来的大脑皮层在调节机能上起著主要作用;而皮层下各级脑部及脊髓虽也有发展,但在机能上已从属于大脑皮层。高等动物一旦失去大脑皮层,就不能维持其正常的生命活动。人类的大脑皮层更产生了新的飞跃,有了抽象思维的能力,成为意识活动的物质基础。人类大脑皮层的神经细胞约有140亿个,面积约2200平方厘米,主要含有锥体形细胞、梭形细胞和星形细胞(颗粒细胞)及神经纤维。按细胞与纤维排列情况可分为多层,自皮层表面到髓质大致分为六层。皮层的神经元之间联系十分广泛和复杂,在皮层的不同部位,各层的厚薄、各种神经细胞的分布和纤维的疏密都有差异。根据皮层的不同特点和功能,可将皮层分为若干区。机体的各种功能在皮层具有定位关系,如运动区、感觉区等。但这仅是相对的,这些中枢也分散有类似的功能。如中央前回(四区)主要管理全身骨胳肌运动,称运动区,但中央前回也接受部分的感觉冲动。中央后回主管全身体躯感觉,但 *** 该区也可产生少量运动。皮层除一些特定功能的中枢外,人类皮层大部分区域称联合区。临床实验证明,某一中枢的损伤,并不使人永久性完全丧失该中枢所管理的功能,经过适当的治疗和功能锻炼,常可由其他区域的代偿而使该功能得到一定程度的恢复。
4 大脑皮层的电活动
大脑皮层神经元具有生物电活动,因此大脑皮层经常具有持续的节律性电位变化,称为皮层自发脑电活动。如果在头皮上安置引导电极,通过脑电图仪可记录到皮层自发脑电活动的图形,称为脑电图。在动物中将颅骨打开或在病人进行脑外科手术时(为了诊断需要),也可将电极直接安置在大脑皮层表面,能记录到同样的皮层自发脑电活动,称为皮层电图。
在头皮不同部位引导的脑电图,它们的波形和频率基本相似,但也有区域的特点。在不同的条件下(如激动、困倦、睡眠等),脑电图的波形和频率则有明显的差别。脑电图波形的分类,主要根据其频率不同来划分;通常频率慢的波,其幅度较大,而频率快的波则幅度较小。脑电图的基本波形,按其频率不同可划分为四种基本类型。
α波:频率为每秒8~13次,幅度为20~100μV。α波在枕部和顶枕部最显著,其波形近似正弦波。正常人在清醒、安静、闭目时,α波即可出现,其波幅呈现由小变大,然后由大变小,如此反复进行的周期性改变,形成所谓α波的“梭形”。每一α波梭形持续约1~2秒。当被试者睁眼或接受其他激动性 *** 时(如令其进行心算),则α波立即消失并转为快波,此现象称为“α波阻断”。因此一般认为,α波是大脑皮层处于清醒安静状态时电活动的主要表现。
β波:频率为每秒14~30次,幅度为5~22μV。β波在额叶与顶叶比较明显。当被试者睁眼视物、进行思考活动时,β波即可出现。有时β波与α波同时在一个部位出现,β波重叠在α波之上。一般认为,β波是大脑皮层处在紧张激动状态时电活动的主要表现。
θ波:频率为每秒4~7次,幅度为20~150μV。θ波在枕叶和顶叶比较明显,在成人困倦时可以出现。在幼儿时期,脑电波频率比成人慢,一般常见到θ波,到十岁后才出现明确的α波。
δ波:频率为每秒0.5~3次,幅度为20~200μV。正常成人在清醒状态下,几乎是没有δ波的,但在睡眠期间可出现δ。在婴儿时期,脑电频率比幼儿更慢,常可见到δ波。一般认为,高幅度的慢波(δ或θ波)可能是大脑皮层处于抑制状态时电活动的主要表现。
5 大脑皮层对内脏活动的调节 5.1 新皮层
在动物实验中电 *** 新皮层,除了能引致躯体运动等反应以外,也可引致内脏活动的变化。 *** 皮层中央前回的内侧面,会产生直肠与膀胱运动的变化; *** 中央前回的外侧面,会产生呼吸及血管运动的变化; *** 中央前回外侧面的底部,会产生消化道运动及唾液分泌的变化。这些结果说明,新皮层与内脏活动有关,而且区域分布和躯体运动代表区的分布有一致的地方。电 *** 人类大脑皮层也能见到类似的结果。
5.2 边缘叶
边缘叶是指大脑半球内侧面,与脑干连接部和胼胝体旁的环周结构;它由扣带回、海马回、海马和齿状回组成。这部分结构曾被认为只与嗅觉联系,而称为嗅脑;但现已明确,其功能远不止这些,而是调节内脏活动的重要中枢。由于边缘叶在结构和功能上和大脑皮层的岛叶、颞极、眶回等,以及皮层下的杏仁核、隔区、下丘脑、丘脑前核等,是密切相关的,于是有人把边缘叶连同这些结构统称为边缘系统。边缘系统的功能比较复杂,它与内脏活动、情绪反应、记忆活动等有关。
边缘系统的内脏调节功能 *** 边缘系统不同部位引起的植物性反应是很复杂的,血压可以升高或降低,呼吸可以加快或抑制,胃肠运动可以加强或减弱,瞳孔可以扩大或缩小等。这些实验结果,说明边缘系统的功能和初极中枢不一样; *** 初级中枢的反应可以比较肯定一致,而 *** 边缘系统的结果就变化较大。可以设想,初级中枢的功能比较局限,活动反应比较单纯;而边缘系统是许多初级中枢活动的调节者,它能通过促进或抑制各初级中枢的活动,调节更为复杂的生理功能活动,因此活动反应也就复杂而多变。
边缘系统与情绪反应 杏仁核的进化比较古老的部分,具有抑制下丘脑防御反应区的功能;当下丘脑失去杏仁核的控制时,动物就易于表现防御反应,出现一系列交感神经系统兴奋亢进的现象,并且张牙舞爪,呈现搏斗的架势。在正常动物中,下丘脑的防御反应区被杏仁核控制着,动物就变得比较驯服。所以边缘系统与情绪反应是有关的。
边缘系统与记忆功能 海马与记忆功能可能有关。由于治疗的需要而手术切除双侧颞中叶的病人,如损伤了海马及有关结构,则引致近期记忆能力的丧失;手术后对日常遇到的事件丧失记忆能力。临床上还观察到,由于手术切除第三脑室囊肿而损伤了穹窿,也能使患者丧失近期记忆能力。海马环路活动与近期记忆有密切的关系。这个环路是:海马→穹窿→下丘脑 *** 体→丘脑前核→扣带回→海马。在环路中任何一个环节受到损坏,均会导致近期记忆能力的丧失。
6 大脑皮层对躯体运动的调节
机体的随意运动只有在神经系统对骨骼肌的支配保持完整的条件下才能发生,而且必须受大脑皮层的控制。大脑皮层控制躯体运动的部位称为皮层运动区。
6.1 大脑皮层运动区
用电 *** 方法观察到,大脑皮层的某些区域与躯体运动有密切的关系; *** 这些区域能引起对侧一定部位肌肉的收缩。这些区域称为运动区,主要位于中央前回(见图1113)。运动区也有一些与大脑皮层体表感觉区相似的特点:①对躯体运动的调节是交叉性的,但对头面部的支配主要是双侧性的。②有精细的功能定位,其安排大体呈身体的倒影,而头面代表区内部的安排是正立的。③运动愈精细复杂的躯体的代表区也愈大,例如手和五指的代表区很大,几乎与整个下肢所占的区域同等大小。④ *** 所得的肌肉运动反应单纯,主要为少数个别肌肉的收缩。此外,在猴与人的大脑皮层,用电 *** 法还可以找到运动辅助区;该区在皮层内侧面(两半球纵裂的侧壁)下肢运动代表区的前面, *** 该区可引起肢体运动和发声,反应一般为双侧性。
大脑皮层运动区对躯体运动的调节,是通过锥体系和锥体外系下传而实现的。
6.2 锥体系及其功能
锥体系一般是指由大脑皮层发出经延髓锥体而后下达脊髓的传导系(即锥体束,或称皮层脊髓束);然而由皮层发出抵达脑神经运动核的纤维(皮层延髓束),虽不通过延髓锥体,也应包括在锥体系的概念之中。因为,后者与前者在功能上是相似的,两者都是由皮层运动神经元(上运动神经元)下传抵达支配肌肉的下运动神经元(脊髓前角运动神经元和脑神经核运动神经元)的最直接通路。
以前认为锥体束下传的纤维均直接与下运动神经元发生突触联系,但现在知道有80%~90%的上、下运动神经元之间还间隔有一个以上中间神经元的接替,仅有10%~20%上、下运动神经元之间的联系是直接的、单突触性的。电生理研究指出,这种单突触直接联系在前肢运动神经元比后肢运动神经元多,而且肢体远端肌肉的运动神经元又比近端肌肉的运动神经元多。由此可见,运动愈精细的肌肉,大脑皮层对其运动神经元的支配具有愈多的单突触直接联系。
锥体系的大脑皮层起源比较广泛,中央前回运动区是锥体系的主要起源,但中央后回以及其他区域也是锥体系的起源部位。中央前回运动区的第五层大锥体细胞发出的纤维组成锥体束中直径较为粗大的有髓鞘纤维,第三至六层的小细胞也发出纤维进入锥体束;中央后回等区域也发出纤维参与锥体束的组成,但运动辅助区的下行纤维不进入锥体束。
6.3 锥体外系
锥体外系是一个复杂的概念。在解剖学中,锥体外系是指不通过锥体系的、调节肌肉运动的系统,因此把基底神经节和小脑等对肌肉运动的调节系统都归属于锥体外系。但在临床上,锥体外系仅指皮层下某些核团(尾核、壳核、苍白球、黑质、红核等)对脊髓运动神经元的调节系统,它们的下行通径在延髓锥体之外。所以,临床上的锥体外系概念比较窄,而且似与大脑皮层无关。但是,现在知道这些核团不仅接受大脑皮层下行纤维的联系,同时还经过丘脑对大脑皮层有上行纤维的联系。因此,目前把由大脑皮层下行并通过皮层下核团(主要指基底神经节)换元接替,转而控制脊髓运动神经元的传导系统,称为皮层起源的锥体外系。
脏活动的调节 5.1 新皮层 在动物实验中电 *** 新皮层,除了能引致躯体运动等反应以外,也可引致内脏活动的变化。 *** 皮层中央前回的内侧面,会产生直肠与膀胱运动的变化; *** 中央前回的外侧面,会产生呼吸及血管运动的变化; *
——呼吸、心跳、消化等。脑干的位置在人的颈部往上一点。3、小脑:小脑属于后脑的一部分,在脑干的上面一点,负责肌肉的协调、神经反射和身体平衡。4、大脑:可以理解为大脑的外层——大脑皮层,包括前脑的新皮质,是人类思维产生的最主要部分。5、左半脑:
神经元和脑神经核运动神经元)的最直接通路。 以前认为锥体束下传的纤维均直接与下运动神经元发生突触联系,但现在知道有80%~90%的上、下运动神经元之间还间隔有一个以上中间神经元的接替,仅有10%~20%上、下运动神经元之间的联系是直接的、单突触性的。电生理研究指