文章导读:
无线电定位
无线电定位(或导航)系统一般根据频率进行分类,高频无线电系统包括肖兰导航系统(短距离精密导航系统)、雷达导航系统,所使用的频率范围在3GHz~9GHz(波长为3cm~10cm),精度很高,但其传播路径基本为直线,所以其测量范围约为40km(与天线高度有关);中频系统有短程相位导航系统,Decca导航系统,Toran和相位比较导航系统,频率范围为1.5MHz~3MHz,无线电波传播时可以沿地球的曲率进行弯曲,测量范围为150km;低频导航系统中常见的有:罗兰-C导航系统,使用的频率为100kHz,测量范围为2000km,而全球Omega系统的发射频率为10kHz~15kHz。
也可以根据测量的方式对无线电定位系统进行分类:①测量射频脉冲在移动站与岸基站之间的传播距离;②测量两个或者多个岸基站信号的传播时差(或相位差)。
雷达与肖兰系统的基本原理相同,肖兰系统与雷达的区别就是肖兰的目标是岸基站,岸站接到脉冲信号后,将信号放大再发射出去,这样测量点收到的信号就会增强。一般使用两个或多个岸站,用交汇法确定移动站的位置。
雷达和肖兰系统都是高频系统,雷达的频率范围是3000MHz~10000MHz,肖兰则为225MHz~400MHz。因为大气层对高频无线电波的反射很弱,所以这些方法的测量距离只是在直线视野内。如果标准天线的高度为30m,肖兰的测量范围大约为80km。如果可将肖兰的岸上站放在海边的小山上,则测量范围就可增至250km。在某些热带或亚热带地区,大气温度梯度很高,对无线电波的折射很强,所以测量范围可达300km或更远。
船与岸上站之间距离的测量精度可达±25m,有的还可达到±5m。产生定位误差的主要原因与连接测量船与岸上站之间直线的夹角有关,一般在30°~150°之间结果都是可接受的。
另外还有些设备的原理与肖兰相同,极易携带,测量精度非常高,可以达到5m。
罗兰-C需要发射频率为100kHz的编码序列脉冲信号,有原子钟精确地控制发射的时间。现在的原子钟相对较便宜,且可靠,也就有可能在船上安装一个原子钟。这也是现在地震船上的标准设备。利用原子钟可以精确记录信号的发射时间,根据记录结果可以得到发射机的量程,这种确定量程的过程称为ρ(rho)模式,如果需要两个或三个发射机才可确定量程,则称为ρ-ρ,ρ-ρ-ρ模式。虽然波长为3km,但是量程的测量精度仍可达20~30m。因为传播距离较长,所以如果地面的传导率或大气的湿度有微小的变化,无线电波的传播速度会产生微小的变化,但对测量结果来说,就会产生相当大的传播误差。为减小这种误差,应在施工地进行校准。船载原子钟会发生缓慢的漂移,所以应该每隔几天对原子钟校准一次。
如果两个岸上站同时发射无线电脉冲或编码序列脉冲信号,移动站R就会记录下两个信号到达的时差,求出船与两个岸上站之间的距离差,与两个岸上站之间的距离差为常数的点组成的轨迹是双曲线,其焦点分别是这两个岸上站A和B。如果只测量一次,只可以确定过移动站的一条双曲线PQ。再测量另一对岸上站(B和C)之间的时差,可以确定另一条双曲线WV,移动站R就是这两条双曲线的交点(图3-3)。
图3-3 由记录时差绘出的双曲线坐标
上述原理就是罗兰和奥米加相位比较模式的基础。这两类设备是美国政府使用的远程无线电导航系统。奥米加是一种全球范围的导航系统,但是波长太长(20~30km),而电离层每一天和季节性的变化等可能影响它的精度。误差大于1km。如果操作比较仔细,相位比较的罗兰-C的精度可接近ρ-ρ模式的罗兰-C的精度。
中波无线电定位系统可以从几个站台发送连续波形,通过比较所接收到的各个波形的相位来确定移动站的位置。地震勘探中使用的相位比较系统的频宽为1.5MHz~40.MHz,量程为650km。
再回到图3-3,岸上站A和B同时发射稳定的连续正弦信号,这两个信号在AB连线的中点M处是同相位的。如果一个载有相位比较器的移动站在M点或在AB垂直平分线MN上,则相位差为零,如果 在相位比较器上显示的就是在P点的相位差,如果移动站从P点出发,沿着使相位为常数的方向移动,其轨迹就是双曲线PQ。通常如果一个点R沿着这种方式移动,使
RA-RB=nλ,n=±1,±2,±3,±4……
就会形成图中所示的双曲线族。
两条相邻的零相位差的双曲线之间的区域称为通道(lane)。如果从一个已知点开始记录连续的相位差变化,就会知道在任何时刻移动站的位置。利用第二对岸上站(例如B和C)发射不同频率的无线电波,可以得到第二个双曲线族,因此就可得到移动站的另一个双曲线坐标,随着离基站的距离越来越远,通道宽度增加,测量精度降低;两条双曲线相交的角度变小,测量精度也会降低。测量精度一般在30m~100m之间。如果中间丢失了一段连续的通道,则根据相位差只能确定移动站在一个通道内的相对位置而不能确定这个站究竟在哪个通道内。在某个已知位置上按一定的顺序,周期地改变频率,可以确定某个通道的位置。如果在中频系统中加上原子钟,就可以将中频系统当作测距设备来使用。
联测可以消除传播误差的影响,提高测量的精度,也就是在一个移动站上对一个固定站同时使用多种方法进行观测。使用联测或至少两种测量方法,测量精度可达1m~3m。
无线局域网络模块是什么?有什么用?
无线局域网都缺乏透视能力――因为每个接入点都是一个单独的节点,按照一个静态RF计划(通常为预测的RF)中的信道和功率设置进行独立配置。尽管这些自主的接入点可以收到附近的某个工作在相同信道的接入点的信号,但是自主接入点无法得知相邻的接入点与其是否属于同一个网络或者是相邻网络。而且,因为自主接入点是“节点式”的,所以很难扩展到大型、连续、协调的无线局域网和添加高级应用。 表1列出了对于自主接入点部署方式的无线需求和解决方案。在某些情况下,采用自主接入点的WLAN的部署会对WLAN带来很多限制。 表1 对于自主接入点部署方式的无线需求和解决方案需要说明自主方式的解决方案第二层快速安全漫游客户端在子网内部的无缝漫游――跨越不同的接入点和虚拟LAN(VLAN)为支持漫游添加一个无线域服务(WDS)设备(接入点或者交换机模块)第三层快速安全漫游客户端在子网之间的无缝漫游――跨越不同的接入点和VLAN自主接入点本身不支持。需要为支持漫游采用一个集中式解决方案升级成本部署额外管理功能和为接入点安装新镜像所需的时间部署一个集中的管理基站或者使用管理脚本入侵检测系统(IDS)能够检测伪装接入点、攻击和未经授权的访问使用一个基于WDS的IDS,或者添加一个覆盖式WLAN解决方案定位服务直观显示接收信号强度指示(RSSI)信息变化和Wi-Fi设备的位置使用一个现场调查解决方案或者一个覆盖式WLAN动态RF迅速地、动态地适应RF环境使用系统级应用设备,或者一个简单网络管理协议(SNMP);RF信息可供手动检查或者措施使用负载均衡自动在相邻接入点之间均衡客户端负荷每个接入点通报服务情况,但是负载不是自动地在接入点之间分布访客联网能够为客户、供应商和合作伙伴提供对WLAN的受控访问权限,同时保持网络的安全性为每个接入点部署专门的中继VLAN,并在整个企业中加以宣传WLAN语音利用现有的无线基础设施提供经济有效的、实时的语音服务部署基于接入点的呼叫准入控制(CAC);控制建立在每个接入点的基础上,不能协调多个接入点管理经济有效的、简化的WLAN管理和部署为配置WLAN管理和单独配置每个接入点部署脚本或者SNMP解决方案
解决方案 使用自主接入点的第一代无线局域网是一种方便的网络。从WLAN首次面世以来,技术需求发生了很多变化。现在,基本的网络连接已经不足以满足需要。企业需要在他们的办公楼中提供无所不在的无线网络连接。他们的WLAN必须支持多种移动服务,例如语音、访客接入、定位和增强的无线入侵防御系统(WIPS),同时还应当提供简化的部署、管理和可扩展性。企业需要突破了表1中所列多种限制的WLAN。 为了部署这些功能和消除这些限制,需要一个统一的WLAN――一个集中式的,基于连接到无线局域网控制器的轻型接入点的网络。因此,机构需要思科统一无线网络。 可扩展性:WLAN必须具备的特性 人们对基于无线网络的可扩展性、高级服务的需求并不是刚刚出现的。事实上,蜂窝网络供应商已经在扩展无线网络方面克服了很多挑战。最初,蜂窝无线网络是由多个提供基本连接的蜂窝信号发射塔结合而成的。当时有很多管理塔间电话呼叫的协议,但是这些协议并不可靠――很多呼叫都会被丢弃。 蜂窝网络运营商需要一个让用户可以在漫游期间保持呼叫的解决方案,以及一个部署高级服务的平台。因此,他们采用了一种名为基站控制器的新型网络组件。 对于蜂窝网络而言,基站控制器可以协调一组无线电发射塔。当蜂窝网络用户在不同发射塔的覆盖范围之间移动时,基站控制器会对漫游切换进行协调。这可以提高蜂窝网络的稳定性,减少被丢弃的呼叫。 蜂窝基站控制器的概念也可应用到802.11 WLAN中。运营商不是管理多个独立的接入点,而是可以通过一个名为无线局域网控制器的集中式设备管理轻型接入点。 WLAN集中化 参照蜂窝网络的发展道路,思科系统公司a率先提出了WLAN集中化的概念,并且为高级无线局域网服务提供了业界第一个统一平台。统一后的架构,我们称之为思科统一无线网络的关键,是将数据从轻型接入点经由网络发送到无线局域网控制器。 思科提供了很多支持无线局域网集中化的无线局域网控制器,其中包括可以完全集成到网络之中的企业级独立无线局域网控制器(例如Cisco 4400系列无线局域网控制器和Cisco 2000系列无线局域网控制器),以及可以与有线网络结合的无线局域网控制器,例如Cisco Catalyst 6500系列无线服务模块(WiSM)和用于集成多业务路由器的思科无线局域网控制器模块(WLCM)。 开发一种新的无线局域网集中化协议 为了在轻型接入点和无线局域网控制器之间传输数据和实现通信,需要一种新的协议。该协议需要满足下列要求: 便于部署――该协议必须能够跨越子网边界,而不是仅仅将多个VLAN连接到集中控制器。 部署安全――将一个接入点加入网络并不意味着它应当具有完全的网络访问权限。该协议需要提供一种对所有连接网络的接入点进行身份验证的方法。 对接入点的实时控制――在部署、认证接入点和将其连接到控制器之后,该协议需要提供对接入点的实时控制,以便管理和部署移动服务。 协议扩展能力――该协议需要支持多种平台--从大型以太网交换机中基于机箱的模块,到可堆叠交换机、路由器和其他任何网络组件。 传输扩展能力――尽管网络通常运行在以太网的基础上,但是该协议必须能够支持低速的WAN连接,甚至无线网络(对于无线网格网络等应用)。 为了满足这些对于开发新型通信协议的要求,思科考虑了很多方案。通用路由封装(GRE)协议是其中之一,但是GRE不支持对纯二层数据包的内部检测,而这是安全WLAN所必须具备的功能。SNMP也被列为考虑对象,因为该协议可以提供对接入点的命令和控制功能,但是它很庞大,不太符合实际需要。 在考虑了其他协议之后,思科决定开发一种新的协议――支持第二层和第三层数据包信息的轻型接入点协议(LWAPP)。 LWAPP是什么? LWAPP是一项由思科系统公司拟定的互联网工程任务小组(IETF)标准草案,实现了轻型接入点和WLAN系统(例如控制器、交换机和路由器)之间的通信协议的标准化。它的目标包括: 减轻接入点中的处理量,让它们将计算资源集中用于无线接入,而不是过滤和策略实施 为整个WLAN系统进行集中的流量处理、验证、加密和策略实施 利用一个第二层基础设施或者IP路由网络,为多供应商接入点互操作性提供一个通用封装和传输机制 LWAPP标准可以通过定义下列规范实现这些目标: 接入点设备发现、信息交换和配置 接入点认证和软件控制 数据包封装、分段和格式化 接入点和无线控制器之间的通信控制和管理
无线电定位车是如何实现定位无线电发射点的
使用定向天线可以检测出信号最强的方向,就是发射机所在的方向,追踪这个信号就可以找到目标。
端在子网之间的无缝漫游――跨越不同的接入点和VLAN自主接入点本身不支持。需要为支持漫游采用一个集中式解决方案升级成本部署额外管理功能和为接入点安装新镜像所需的时间部署一个集中的管理基站或者使用管理脚本入侵检测系统(IDS)能够检测伪装
化,但对测量结果来说,就会产生相当大的传播误差。为减小这种误差,应在施工地进行校准。船载原子钟会发生缓慢的漂移,所以应该每隔几天对原子钟校准一次。如果两个岸上站同时发射无线电脉冲或编码序列脉冲信号,移动站R就会记录下两个
窝网络的稳定性,减少被丢弃的呼叫。 蜂窝基站控制器的概念也可应用到802.11 WLAN中。运营商不是管理多个独立的接入点,而是可以通过一个名为无线局域网控制器的集中式设备管理
于机箱的模块,到可堆叠交换机、路由器和其他任何网络组件。 传输扩展能力――尽管网络通常运行在以太网的基础上,但是该协议必须能够支持低速的WAN连接,甚至无线网络(对于无线网格网络等应用)