北斗定位坐标系_北斗定位坐标系统

hacker|
99

文章导读:

北斗与GPS的九大技术区别,不看后悔

下面是北斗与GPS的九大技术区别:

1 三频信号

北斗使用的是三频信号,GPS使用的是双频信号,这是北斗的后发优势。虽然GPS从2010年5月28日发射了第一颗三频卫星,但等到GPS卫星全部老化报废更换为三频卫星还好几年。这几年就是北斗的优势期。三频信号可以更好的消除高阶电离层延迟影响,提高定位可靠性,增强数据预处理能力,大大提高模糊度的固定效率。而且如果一个频率信号出现问题,可使用传统方法利用另外两个频率进行定位,提高了定位的可靠性和抗干扰能力。北斗是全球第一个提供三频信号服务的卫星导航系统。

2 有源定位及无源定位

有源定位就是接收机自己需要发射信息与卫星通信,无源定位不需要。北斗一代的有源定位,有源定位技术只要两颗卫星就可以完成定位,但需要信息中心DEM(数字高程模型)数据库支持并参与解算。它在北斗二代上被保留下来,但不作为主要的定位方式。而北斗二代使用的是无源定位,和GPS是一样的,不需要信息中心参与解算,有源定位则作为补充功能。

这个功能的好处是当你观测的卫星质量很差,数量较少时(理论上,无源定位至少要4颗卫星才能解算 XYZ 和时间四个未知参数,实际需要的更多),仍然可以定位。这个功能对于紧急情况会比较有用,比如在山谷中,观测条件非常差,能知道大概位置也是非常重要的。坏处是在战争中会暴露你的位置信息。

需要信息中心参与解算是因为"“资源有限”,比如,某北斗一代手持机,每 60秒可以定位一次,不能频繁定位,以保证信息中心不能过载。但是北斗一代不能民用的主要原因却不是因为这个。

北斗一代称为北斗卫星实验系统(RDSS),北斗二代称为北斗卫星导航系统(RNSS),“一代,二代”是为方便称呼。从名字上就可以知道,北斗一代只是做个内部实验而已,检验一下我们的理论、技术是否可行,定位精度如何,再进行后续改进,设计的初衷根本没打算民用啊。

3 短报文通信服务

这个是中国卫星导航的原创功能,并且非常实用。08年汶川地震的时候,震区唯一的通讯方式就是北斗一代。这一特色功能毫不意外在二代中保留下来。但是这个功能也是有容量限制的,所以并不适合作为日常通信功能,而是作为紧急情况通信比较合适。基于这个功能,北斗还有一个好处是,不但能知道我在哪,还能让别人知道你在哪。这个功能有利于求救。

4 境内监控

卫星定位系统一般由三部分组成:空间星座部分,地面监控部分和用户接收机部分。其中,地面地面监控部分又由三大部分组成:监控站,主控站,注入站。

GPS系统在全球建 5个监控站,1个主控站和3个注入站以保证卫星运行,这些站都设在美国国土上,并且在全球分布很均匀。包括美洲大陆的美国本土,太平洋的关岛和夏威夷、印度洋的迭哥枷西亚以及大西洋的阿森松群岛。中国没法把监控站建到全球,所以中国在设计北斗系统时必须考虑到,地面监控部分只建在中国境内,就能够保证整个系统的正常运行。在境外建站也不是不可以,只是就算建了,也只起到提高精度的作用,绝对不能作为控制功能。这本来是北斗的劣势,境内监控是被逼出来的,没有其他选项,但现在成了北斗的安全优势,不用受制于其他国家。

如今中国境外的首个陆地遥感卫星数据接收站 “北极站 ”,将于今年在瑞典开工建设,预计两年建成。中国将在南美洲的阿根廷建造首个境外卫星跟踪站。从南美到北极,中国卫星产业开启全球化模式。

5 分步开通

GPS必须整个系统建成后才能使用。目前北斗的14颗在轨卫星使用了5颗地球静止轨道(GEO)卫星,5颗倾斜地球同步轨道(IGSO)卫星,4颗中高度圆轨道(MEO)卫星。北斗的星座方案来之不易,许院士说当时有几个方案参与竞争,光是方案的修改论证就持续了整整三年,最后确定的这个方案不敢说没有缺点,但绝对是所有方案里最好的一个。言归正传,北斗卫星导航系统在这个创新的空间星座支持下,仅仅发射了16颗卫星,就于2012年12月27日在亚太地区正式开通运行。这有利于加快北斗的商用进程,有利于对后续的系统做进一步改进,有利于加快北斗产业链的成熟。毕竟北斗的最大市场肯定是中国嘛,先让北斗系统在亚太地区发展几年,让芯片成熟几年,想推广到全球的时候也会相对容易。而且亚太地区的卫星利用效率肯定也更高,更值得优先投资。

6 局部加强,逐步成熟

理论上 GPS在全球的定位精度是相当的。北斗系统针对中国及其周边地区是特别加强过的,在国内卫星的几何条件比较好。单点定位的精度取决于两个方面:一是观测量精度,二是所观测卫星的空间几何分布。导航中用精度衰减因子 DOP 来表示卫星空间图形的贡献,包括:空间精度衰减因子GDOP 、位置精度衰减因子PDOP、时间精度衰减因子TDOP、平面精度衰减因子HDOP、垂直精度衰减因子VDOP、相对定位几何精度衰减因子RDOP。随着北斗全球系统逐渐成熟,DOP 越来越小,它在中国及周边地区的定位精度超过GPS也只是时间问题。“逐步成熟 ” 并不是一个托词,而是技术、理论上的进步。

(1)卫星数量增加。

GPS设计使用21+3颗卫星,即21颗工作卫星,3颗备用卫星。目前GPS实际已经使用了32颗卫星,卫星数量越多,就会得到越多的冗余数据,数据就越可靠,DOP值越小。北斗现在只有16颗,等北斗卫星的数量越来越多,也会得到更多观测数据,精度提升是必然的了。目前北斗芯片一般会支持 GPS,可能存在以下原因,第一是补充北斗系统的精度,第二是为了开拓市场(刚开始只支持北斗没人用啊)。这样的话芯片更复杂,功耗更高,开发难度更大。但也不能说全是坏处,目前兼容不同系统也是行业发展的趋势,GLONASS芯片一般也要兼容GPS,北斗芯片也有支持GLONASS甚至三个系统的。兼容系统,数据冗余更多了,精度更高,DOP小,这项功能做好了也会成为中国芯片厂商的优势。

补充一下,目前魅族MX4,MX4pro,小米4,华为G7,三星S5,NOTE4现在均已支持 GPS、GLONASS、北斗。可以看到,兼容三大导航系统已经是大势所趋,相信在不久的将来,兼容北斗的终端将会越来越多。

(2)改正模型优化。

与信号传播路径有关的误差有:对流层折射误差,电离层折射误差延迟误差,多路径效应,地球自转效应误差。这些误差是没办法完全消除的,只能不断减小。用于改进电离层折射误差延迟误差的Klobuchar模型就是根据长时间气象观测数据,构造出电离层折射随时间变化的经验公式。说白了就是猜出来的,不过是有水平,有数据支持,聪明的猜,才出来后进行试验验证,好用就留着,不好用就继续改。全球不同地区的电离层对流层都是不同的,这些公式是根据国外的观测数据构造的,用在中国自然会差一些,我们需要给北斗更多的时间累计观测数据,等待开发或优化更多的适合中国地区的改正模型。

(3)卫星轨道精度提高。

卫星的实际运行轨道肯定与设计轨道有一定的差距。伪距定位的原理是:采用距离后方交会的方法确定接收机天线的三维坐标。只有卫星轨道精度提高了定位精度才会高。卫星的轨道是通过监控站的观测数据拟合出来的,观测时间越久,累积的数据越多,拟合的轨道越精确。北斗缺少国外的观测数据,所以轨道精度在亚太地区较高,在国外的轨道精度会比较差。弥补这个缺陷也需要给北斗时间。再提一下地球静止轨道(GEO)卫星。GEO卫星相对地球做不到完完全全的静止,会有一定的漂移。而地球同步轨道只有一个,资源非常稀缺,国际上把这个轨道划分成了一小段一小段的圆弧,卫星只能在分配的范围内移动,否则可能与其他卫星相撞,所以每隔一段时间就需要调整GEO卫星位置。目前调整北斗采用的是脉冲式,只能按整次数来调整卫星的位置,不能是零点几次,所以可能出现多一次嫌多,少一次不足的情况。在后续发射的GEO卫星,调整卫星会改用连续式,想喷多少就喷多少,增强卫星控制能力与精度。一旦进行调整,之前的观测数据就会作废,需要重新累积数据。在调整卫星期间,那颗卫星处于失效状态,因为我们不知道它的具体位置,需要几天时间来重新定轨。但好在GEO卫星数量比较少(5颗),定轨比其他两种卫星容易一些,速度也比较快一些。其他两种卫星不存在这种情况,观测时间久了,拟合的轨道精度自然就提高了,直到它耗尽为止。

7 定位精度

北斗系统定位精度由水平25m、高程30m,提高至目前水平10m、高程10m,测速精度由每秒 0.4米,提高至0.2m,受时精度优于20ns,目前在中国及周边地区,北斗系统服务性能与GPS相当。 许院士讲座时说,他们的实测精度(按中误差算)可以达到水平 4—5m,高程 5-6m的精度水平。许院士表示,北斗在刚投入使用就能达到如此精度,这连他们设计北斗系统的时候都没想到,已经非常满意了,而且北斗还有很大进步空间,精度还能进一步提高。

上述10m的精度,很多人认为应该是对亚太地区的平均精度。需要注意的是,北斗的平面精度与高程精度是基本相当的,而GPS系统的水平精度确实不错,但是它的高程精度是软肋,比水平精度差得比较多,一般1.5倍到2倍。

GPS定位精度可以达到mm级,这是能实现的,但是不能脱离限制条件而谈。卫星定位方法有很多种形式,如果按用户卫星测量设备在作业中的状态,可分为静态定位与动态定位,若按参考点的位置不同,可分为绝对定位和相对定位。差分技术是基于同步同轨性原理,使用已知点的基准站,计算出改正信息,再发送给流动站,进而改正流动站的瞬时位置。这是针对动态测量的技术,把定位精度由10-40m 提高到小于3m。精度达到mm级应该是静态的长时间的优质观测条件下的绝对定位。具体解释一下,静态,就是要专门建一个房子,专门建一个固定观测墩,这时三脚架精度已经不够,而且还容易被移动。长时间,就是24小时,365天不间断观测,这就肯定要保证有电源,而且要求还很高,不能断电,备用电源神马的一定要有。优质观测条件,就是要没有电磁干扰,没有高达建筑遮挡,人不能随意靠近GPS天线,附近不能有平静水面(会有多路径效应),没有大的山坡。不可或缺的是一台高精度,高稳定性,高品质的 GPS 接收机及其他附属设施(保存、处理数据等功能)。要满足这些条件只能远离城市,在有一定条件的农村,建一个永久的高精度观测站。不是随随便便就能满足这样苛刻条件的,建设和运行成本都非常高。北斗要这么观测,精度肯定也不是10m了,不要随便道听途说了一个数据就说比北斗强,请说明观测条件。特别说明一下,GPS系统使用的是WGS-84坐标系,北斗使用的是CGCS2000坐标系,所以二者的数值不能直接进行比较,需要进行坐标转换,而坐标转换一般会带来精度上的损失。精度是可以在各自坐标系下直接比较的,不用进行坐标转换。

8 促进整个制造业的升级

(1)GPS的芯片那么好用,难道我们北斗系统的芯片不好用就不去努力进步了吗?答案肯定是否定。

建成北斗系统,中国芯片厂商春天到了!虽然目前存在着差距,但是中国的芯片厂商终于可以有机会和国外的芯片厂商在北斗芯片上一较高低,这是完全有可能的。反倒是让国内的芯片厂商生产 GPS 的芯片和国外厂商竞争,那才叫几乎不可能。这就叫打破GPS的垄断地位。专家预测,到2020年,仅北斗卫星导航市场将达到年产值4000亿元人民币,年复合增长率达到 40% 以上。

北斗很赚钱,国家给你创造机会了,这个钱要怎么拿,就看各自的本事了。看看全国遍地开花的北斗产业园就知道机会多难得。整个系统国家只负责空间星座和地面监控部分,这两部分耗资巨大,技术要求高,且具有唯一性,系统性能指标主要取决于这两部分。用户接受设备部分则主要交给市场完成,这部分决定了导航系统的易用性,生态链的活力等,但这部分是人人都可以参与的,替代性非常强。不能提高自身竞争力的产品终究会被替换下场。

(2)北斗系统的精度不够高很大一部分的原因是中国的原子钟不行。

卫星导定位中,时间系统有着极其重要的意义,在由跟踪站对卫星进行定轨时,要求卫星位置的误差小于1cm时,相应的时刻误差应小于2.6μs(1微秒=10-6秒);如果要求测量的距离误差小于1cm时,则信号传播时间的测定误差应小于 0.03ns(1纳秒=10-9秒)。中国的原子钟相对国外产品,体积大、质量重、精度还差了一个量级,这种高精尖的技术国外是对中国禁运的,我们只能靠自己。为什么不行?因为有一段时间原子钟是可以从国外买的,相比起自己研制成本还不高,质量很好,国内直接放弃研制原子钟了。等中国说要建导航系统,国外立刻对中国实施禁运,中国这个时候才赶紧又开始原子钟的研制工作,暂停研制这几年对中国的原子钟发展多可惜,本来技术虽然不算先进,但也勉强跟上世界潮流,现在却拉下一大截,如果中国一直坚持自己研制原子钟,现在的北斗系统精度更高。要不是北斗系统,中国的原子钟技术更是悲剧了。

9 建设速度快

欧洲早在1999年2月10日就提出建设GALILEO系统,在2005年发射了第一颗实验卫星,2008年4月27日,发射第二颗实验卫星,进度比最初的计划推迟了整整五年,2012年10月发射第3第4颗卫星。这四颗卫星组成网络,初步发挥地面精确定位的功能。

北斗的第一颗卫星在2007年4月14日发射升空,2012年10月25日第16颗北斗卫星发射,这是北斗区域网最后一颗卫星,北斗导航工程区域组网顺利完成, 2013年12月27日正式发布了《北斗系统公开服务性能规范(1.0版)》和《北斗系统空间信号接口控制文件(2.0版)》两个系统文件,这是北斗正式商用的标志,所有的厂商都可以根据这两个文件来开发自己的产品。

北斗卫星的定位原理是什么?有哪些难度呢?

引言:我们国家的北斗卫星导航系统是非常好的,而且比较安全。很多人都想知道北斗卫星的定位原理是什么,他们存在哪些难度呢?接下来跟着小编一起去了解一下吧。

一、北斗卫星定位的原理是什么

其实北斗卫星定位的原理是通过一些卫星的距离计算出用户的距离进行定位的。我们要知道用户到卫星之间的距离之和,这个时候就要知道第1颗卫星在球心的一个球面,这个时候会有两颗卫星为一个交点,在一个为椭圆球面的平面之上,形成一个交线,这个时候就能计算出用户的所在位置。而且中间会有一些中心控制系统,会有一些存储在计算机内的素质这个时候进行一个地图的查找,就可以将用户的位置准确的计算出来,也可以知道用户在某一地点与地球的一个焦点。所以这个时候通过中心控制系统,可最终计算出用户所在点的三维坐标,根据这个坐标系就可以发送信号给用户,用户就能查找到他自己所在位置。

二、北斗卫星定位系统需要一些难度的跨越

人们使用北斗卫星定位系统的时候是非常容易的,但是科研人员在制作之前是需要有一些难度的跨越,才能让北斗卫星定位系统变得更加完善。首先我们要知道卫星定位,它中间可能会有一个到达时间差的概念,所以科研人员就要跨越这个难度去计算出到达时间差的一些概念。首先我们需要知道到达时间差的概念是什么,就是利用每一颗卫星的精确位置。从而来发送出一些导航信息,就获得一些卫星上面的接收信息这个时候到达的时间差就叫做到达时间差。而且也要知道卫星的位置,精准可知要懂得接收对卫星观测,而且还要计算卫星到接收机之间的距离,从而计算出准确的位置。

货车为什么要北斗定位?

让货车安装北斗,是为了监测司机的超速和疲劳驾驶等违章驾驶行为,协助交通控制部门调查。

根据相关规定,驾驶汽车在不停车或停车少于20分钟的情况下,不得驾驶汽车超过4个小时,否则,将在驾驶执照上记6分,并处200元罚款。

国家规定道路运输车辆必须安装北斗定位系统,包括用于公路营运的载客汽车、危险货物运输车辆、半挂牵引车以及重型载货汽车(总质量为12吨及以上的普通货运车辆)。

具体法规规定:

根据《道路运输车辆动态监督管理办法》第三十七条,道路运输经营者使用卫星定位装置出现故障不能保持在线的运输车辆从事经营活动的,由县级以上道路运输管理机构责令改正。拒不改正的,处800元罚款。

第三十八条规定,违反本办法的规定,有下列情形之一的,由县级以上道路运输管理机构责令改正,处2000元以上5000元以下罚款:

(一)破坏卫星定位装置以及恶意人为干扰、屏蔽卫星定位装置信号的;

(二)伪造、篡改、删除车辆动态监控数据的。

导航电文中的卫星坐标是什么坐标系?

各大导航系统使用的坐标系是不一样的。

我们常用的GPS使用的是WGS-84坐标系。

PS:北斗用的是CGCS-2000

GPS 坐标系

说完GPS位置信息接下来说下坐标系。目前主要有三种地理坐标系,如下:

1、WGS84坐标系:即地球坐标系(World Geodetic System),国际上通用的坐标系。设备包含的GPS芯片或者北斗芯片获取的经纬度一般都是为WGS84地理坐标系,目前谷歌地图采用的是WGS84坐标系(中国范围除外)。

2、GCJ02坐标系:即火星坐标系,国测局坐标系。是由中国国家测绘局制定。由WGS84坐标系经加密后的坐标系。谷歌中国和搜搜中国采用的GCJ02地理坐标系。

3、BD09坐标系:百度坐标系,GCJ02坐标系经加密后的坐标系。

1、北京54坐标系(BJZ54)

北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。

1954年北京坐标系的历史:

新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。

北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3;

2、西安80坐标系

1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。为此有了1980年国家大地坐标系。1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG 75地球椭球体。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。

西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.25722101

3、WGS-84坐标系

WGS-84坐标系(World Geodetic System)是一种国际上采用的地心坐标系。坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP)方向,X轴指向BIH1984.0的协议子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。这是一个国际协议地球参考系统(ITRS),是目前国际上统一采用的大地坐标系。GPS广播星历是以WGS-84坐标系为根据的。

WGS84坐标系,长轴6378137.000m,短轴6356752.314,扁率1/298.257223563。

由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数。对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换。当然若条件不许可,且有足够的重合点,也可以进行人工解算。

我国常用高程系

“1956年黄海高程系”,是在1956年确定的。它是根据青岛验潮站1950年到1956年的黄海验潮资料,求出该站验潮井里横按铜丝的高度为3.61 米,所以就确定这个钢丝以下3.61米处为黄海平均海水面。从这个平均海水面起,于1956年推算出青岛水准原点的高程为72.289米。

国家85高程基准其实也是黄海高程基准,只不过老的叫“1956年黄海高程系统”,新的叫“1985国家高程基准”,新的比旧的低0.029m

我国于1956年规定以黄海(青岛)的多年平均海平面作为统一基面,为中国第一个国家高程系统,从而结束了过去高程系统繁杂的局面。但由于计算这个基面所依据的青岛验潮站的资料系列(1950年~1956年)较短等原因,中国测绘主管部门决定重新计算黄海平均海面,以青岛验潮站1952年~1979年的潮汐观测资料为计算依据,并用精密水准测量接测位于青岛的中华人民共和国水准原点,得出1985年国家高程基准高程和1956年黄海高程的关系为: 1985年国家高程基准高程=1956年黄海高程-0.029m。1985年国家高程基准已于1987年5月开始启用,1956年黄海高程系同时废止。

各高程系统之间的关系:

56黄海高程基准:+0.000

85高程基准(最新的黄海高程):56高程基准-0.029

吴淞高程系统:56高程基准+1.688

珠江高程系统:56高程基准-0.586

我国目前通用的高程基准是:85高程基准

1、椭球体

GIS中的坐标系定义由基准面和地图投影两组参数确定,而基准面的定义则由特定椭球体及其对应的转换参数确定。

基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的基准面。基准面是在椭球体基础上建立的,椭球体可以对应多个基准面,而基准面只能对应一个椭球体。

椭球体的几何定:

O是椭球中心,NS为旋转轴,a为长半轴b为短半轴。

子午圈:包含旋转轴的平面与椭球面相截所得的椭圆。

纬圈:垂直于旋转轴的平面与椭球面相截所得的圆,也叫平行圈。

赤道:通过椭球中心的平行圈。

基本几何参数:

几种常见的椭球体参数值

| |

克拉索夫斯基椭球体

|

1975年国际椭球体

|

WGS-84椭球体

|

|

a

|

6378245.0000000000(m)

|

6378140.0000000000(m)

|

6378137.0000000000(m)

|

|

b

|

6356863.0187730473(m)

|

6356755.2881575287(m)

|

6356752.3142(m)

|

|

c

|

6399698.9017827110(m)

|

6399596.6519880105(m)

|

6399593.6258(m)

|

|

α

|

1/298.3

|

1/298.257

|

1/298.257 223 563

|

|

e2

|

0.006693421622966

|

0.006694384999588

|

0.0066943799013

|

|

e'2

|

0.006738525414683

|

0.006739501819473

|

0.00673949674227

|

2、地图投影

地球是一个球体,球面上的位置是以经纬度来表示,我们把它称为“球面坐标系统”或“地理坐标系统”。在球面上计算角度距离十分麻烦,而且地图是印刷在平面纸张上,要将球面上的物体画到纸上,就必须展平,这种将球面转化为平面的过程,称为“投影”。

经由投影的过程,把球面坐标换算为平面直角坐标,便于印刷与计算角度与距离。由于球面无法百分之百展为平面而不变形,所以除了地球仪外,所有地图都有某些程度的变形,有些可保持面积不变,有些可保持方位不变,视其用途而定。

目前国际间普遍采用的一种投影,是即横轴墨卡托投影(Transverse Mecator Projection),又称为高斯-克吕格投影(Gauss-Kruger Projection),在小范围内保持形状不变,对于各种应用较为方便。我们可以想象成将一个圆柱体横躺,套在地球外面,再将地表投影到这个圆柱上,然后将圆柱体展开成平面。圆柱与地球沿南北经线方向相切,我们将这条切线称为“中央经线”。

在中央经线上,投影面与地球完全密合,因此图形没有变形;由中央经线往东西两侧延伸,地表图形会被逐渐放大,变形也会越来越严重。

为了保持投影精度在可接受范围内,每次只能取中央经线两侧附近地区来用,因此必须切割为许多投影带。就像将地球沿南北子午线方向,如切西瓜一般,切割为若干带状,再展成平面。目前世界各国军用地图所采用的UTM 坐标系统 (Universal Transverse Mecator Projection System),即为横轴投影的一种。是将地球沿子午线方向,每隔 6 度切割为一带,全球共切割为 60 个投影带。

地图投影几何分类主要包括:

3、GIS中地图投影的定义

我国的基本比例尺地形图〔1:5千、1:1万、1:2.5万、1:5万、1:10万、1:25万、1:50万、1:100万〕中,大于等于50万的均采用高斯-克吕格投影〔Gauss-Kruger〕;小于50万的地形图采用正轴等角割园锥投影,又叫兰勃特投影〔Lambert Conformal Conic〕;海上小于50万的地形图多用正轴等角园柱投影,又叫墨卡托投影(Mercator),我国的GIS系统中应该采用与我国基本比例尺地形图系列一致的地图投影系统。

相应高斯-克吕格投影、兰勃特投影、墨卡托投影需要定义的坐标系参数序列如下:

高斯-克吕格:投影代号(Type),基准面(Datum),单位(Unit), 中央经度(OriginLongitude),原点纬度(OriginLatitude), 比例系数(ScaleFactor), 东伪偏移(FalseEasting),北纬偏移(FalseNorthing)

兰勃特:投影代号(Type),基准面(Datum),单位(Unit),中央经度(OriginLongitude),原点纬度(OriginLatitude), 标准纬度1(StandardParallelOne),标准纬度2(StandardParallelTwo), 东伪偏移(FalseEasting),北纬偏移(FalseNorthing)

墨卡托:投影代号(Type),基准面(Datum),单位(Unit), 原点经度(OriginLongitude),原点纬度(OriginLatitude), 标准纬度(StandardParallelOne)

高斯-克吕格投影以6度或3度分带,每一个分带构成一个独立的平面直角坐标网,投影带中央经线投影后的直线为X轴(纵轴,纬度方向),赤道投影后为Y轴(横轴,经度方向),为了防止经度方向的坐标出现负值,规定每带的中央经线西移500公里,即东伪偏移值为500公里,由于高斯-克吕格投影每一个投影带的坐标都是对本带坐标原点的相对值,所以各带的坐标完全相同,因此规定在横轴坐标前加上带号,如(4231898,21655933)其中21即为带号,同样所定义的东伪偏移值也需要加上带号,如21带的东伪偏移值为21500000米。假如你的工作区位于21带,即经度在120度至126度范围,该带的中央经度为123度,采用Pulkovo 1942基准面,那么定义6度分带的高斯-克吕格投影坐标系参数为:(8,1001,7,123,0,1,21500000,0)。

4、大地坐标系

有了椭球体以及地图投影,坐标系就能确定下来了。北京54和西安80是我们使用最多的坐标系。我们通常称谓的北京54坐标系、西安80坐标系实际上使用的是我国的两个大地基准面北京54基准面和西安80基准面。我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的1975地球椭球体建立了我国新的大地坐标系——西安80坐标系,目前大地测量基本上仍以北京54坐标系作为参照,北京54与西安80坐标之间的转换可查阅国家测绘局公布的对照表。 WGS-84坐标系采用WGS1984基准面及WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心,目前GPS测量数据多以WGS1984为基准。

北京54坐标系:

北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以格拉索夫斯基椭球为基础,经局部平差后产生的坐标系,与苏联1942年建立的以普尔科夫天文台为原点的大地坐标系统相联系,相应的椭球为克拉索夫斯基椭球。到20世纪80年代初,我国已基本完成了天文大地测量,经计算表明,54坐标系统普遍低于我国的大地水准面,平均误差为29米左右。

西安80坐标系:

西安80是为了进行全国天文大地网整体平差而建立的。根据椭球定位的基本原理,在建立西安80坐标系时有以下先决条件:

(1)大地原点在我国中部,具体地点是陕西省径阳县永乐镇;

(2)西安80坐标系是参心坐标系,椭球短轴Z轴平行于地球质心指向地极原点方向,大地起始子午面平行于格林尼治平均天文台子午面;X轴在大地起始子午面内与 Z轴垂直指向经度0方向;Y轴与 Z、X轴成右手坐标系;

(3)椭球参数采用IUG 1975年大会推荐的参数,因而可得西安80椭球两个最常用的几何参数为:

长轴:6378140±5(m)

扁率:1:298.257

椭球定位时按我国范围内高程异常值平方和最小为原则求解参数。

(4)多点定位;

(5)大地高程以1956年青岛验潮站求出的黄海平均水面为基准。

WGS-84(World Geodetic System,1984年)坐标系:

是美国国防部研制确定的大地坐标系,其坐标系的几何定义是:原点在地球质心,z轴指向 BIH 1984.0定义的协议地球极(CTP)方向,X轴指向 BIH 1984.0 的零子午面和 CTP赤道的交点。Y轴与 Z、X轴构成右手坐标系。

WGs-84椭球及有关常数:

对应于 WGS-8大地坐标系有一个WGS-84椭球,其常数采用 IUGG第17届大会大地测量常数的推荐值。

WGS-84椭球的几何常数:

长半轴:6378137± 2(m)

扁率:1 / 298.257223563

地球引力常数(含大气层)GM=3986005

正常化二阶带谐系数C2.0=-484.16685×10-6

地球自转角速度 w=7292115×10-11 rads -1

主要几何和物理常数

短半径 b=6356752.3142m

扁率 f=1/298.257223563

第一偏心率平方 e2=0.00669437999013

第二偏心率平方 e’2 =0.006739496742227

椭球正常重力位 U0=62636860.8497m2s-2

赤道正常重力 r0=9.9703267714ms-2

END

地勘岩测类报告编写QQ群:240947553

编辑微信号:CX15616506143

北斗卫星导航系统的原理

北斗卫星导航系统的原理是基准站接受卫星导航信号后,会通过数据处理系统形成相应的信息,再由卫星、广播、移动通信等手段将信息实时发送至应用终端,实现定位服务。北斗卫星导航定位系统的定位精度为10米,测速精度为0.2米/秒,授时精度为10纳秒。

北斗导航为是我国自主建设的卫星导航定位系统,和美国的GPS、欧洲伽利略(GALILEO)、俄罗斯格洛纳斯(GLONASS)都属于全球卫星导航系统(NGSS)。

北斗导航系统的构成。

北斗卫星导航定位系统由空间段、地面段和用户段三部分组成。据《兰州晚报》报道,空间段由若干地球静止轨道卫星、倾斜地球同步轨道卫星和中圆地球轨道卫星三种轨道卫星组成;地面段包括基准站、主控站、时间同步/注入站和监测站等若干地面站;

用户段包括北斗兼容其他卫星导航系统的芯片、模块、天线等基础产品,以及终端产品、应用系统与应用服务等。北斗卫星导航定位系统将通过这三部分实现精准定位。

以上内容参考 人民网——北斗卫星导航定位系统:精准定位就是它的最强技能

2条大神的评论

  • avatar
    访客 2022-09-03 下午 02:50:43

    松群岛。中国没法把监控站建到全球,所以中国在设计北斗系统时必须考虑到,地面监控部分只建在中国境内,就能够保证整个系统的正常运行。在境外建站也不是不可以,只是就算建了,也只起到提高精度的作用,

  • avatar
    访客 2022-09-03 下午 08:19:26

    斗卫星导航系统是非常好的,而且比较安全。很多人都想知道北斗卫星的定位原理是什么,他们存在哪些难度呢?接下来跟着小编一起去了解一下吧。一、北斗卫星定位的原理是什么其实北斗卫星定位的原理是通过一些卫

发表评论